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Abstract: In this paper, we develop a deep 

reinforcement learning-based routing, modulation format 

and spectrum assignment (RMSA) algorithm for elastic 

optical networks capable of provisioning dynamically 

lightpath services. In order to enhance the network 

performance, the developed RMSA exploits deep 

reinforcement learning (DRL) mechanism for selecting 

efficient route and spectral resource by learning 

experiences of dynamic lightpath provisioning. Numerical 

simulations have been utilized to estimate the performance 

of the elastic optical network applied the proposed DRL-

based RMSA solution. The obtained results demonstrate 

that our proposed network solution outperforms the 

conventional shortest path algorithm-based one 

significantly and offers a notable performance 

enhancement in terms of blocking probability and 

accepted traffic volume. 

Keywords: Deep reinforcement learning, elastic optical 

network, routing and spectrum assignment, network 

control algorithm. 

I. INTRODUCTION 

To cope with the Internet traffic explosion and the 

popular adoption of new networking paradigms, 

development of cost-effective, dynamic and heterogeneous 

bandwidth-abundant flexible optical backbone networks is 

essential [1, 2]. Recently, elastic optical networks (EONs) 

have been emerged and realized as one of the most 

promising networking technologies for the next-generation 

backbone networks [3]. Compared to traditional fixed-grid 

(e.g., 50 GHz) wavelength-division multiplexing (WDM) 

network, EON enables flexibly setting-up bandwidth-

variable superchannels by grooming series of finer-

granularity subcarriers and adapting the modulation 

formats according to the QoT of lightpaths [4, 5]. Thanks 

to that, elastic optical networks are capable of provisioning 

dynamic bandwidth-flexible end-to-end connection and 

offer service providers the flexibility to customize their 

infrastructure dynamically according to application 

requirements [6, 7]. In EONs, routing and spectrum 

allocation includes three sub-problems, namely routing, 

modulation and spectrum assignment (RMSA/RSA), that is 

known as an NP hard. Up to now, many studies have 

intensively investigated the routing, modulation and 

spectrum assignment (RMSA) problem in order to fully 

exploit the benefits of EONs. However, many 

technological issues and challenges must be dealt with to 

realize and commercialize elastic optical networks due to 

the requirements of more complicated network planning 

and more sophisticated optical-path provisioning schemes 

[4-6].  

Furthermore, different from static RMSA problems for 

which explicit optimization models can be formulated, 

dynamic RMSA problems that target the optimization of 

provisioning lightpaths dynamically and flexibly are more 

challenging [8-10]. Due to the time-varied arrivals and 

departures of requested lightpaths as well as the uncertainty 

of future traffic demands, EON state becomes dramatically 

destabilized and hence, the efficiency of the optimizations 

based on the current state is deteriorated [6, 8]. 

Unfortunately, the existing works only employ pre-

determined (fixed) RMSA policies regardless of the time-

varying EON states or depend on simple empirical policies 

based on manually extracted features, i.e., lack of 

comprehensive perceptions of the holistic EON states, and 

consequently are unable to achieve real adaptive service 

provisioning in EONs. 

In the meantime, recent advances in deep reinforcement 

learning (DRL) have demonstrated beyond human-level 

performance in handling large-scale online control tasks 

[11, 12]. The application of DRL in the optical 

communication and networking domain has received 

intensive research interests and opens a new approach. 

DRL parameterizes action policies with deep neural 

networks (DNNs) [13, 14] that can perceive complex 

system states from high-dimensional input data, such as, 

images, and traffic matrices. By accumulating action 

experiences from repeated interactions with the target 

systems and by reinforcing actions leading to higher 

rewards, DRL is able to learn successful policies (i.e., 

correct configurations of the DNNs) progressively. Several 

applications of emerging deep reinforcement learning 

(DRL) techniques in EONs for enabling an autonomic 

 

Contact author: Hai Chau Le 

Email: chaulh@ptit.edu.vn 

Manuscript received: 25/8/2022, revised: 24/10/2022, accepted: 
12/11/2022. 

 



DEEP REINFORCEMENT LEARNING-BASED DYNAMIC LIGHTPATH PROVISIONING FOR ELASTIC OPTICAL ….   

(self-driving) and cognitive networking framework have 

been introduced and show a lot of potential [15-18]. This 

new approach enables self-learning-based service 

provisioning capabilities by employing DRL agents to 

learn policies from dynamic network operations to enhance 

the overall network performance. 

In this paper, we deal with routing, modulation format 

and spectrum assignment problem by applying deep 

reinforcement learning technique in elastic optical 

networks capable of provisioning dynamically lightpath 

services. By learning experiences of dynamic lightpath 

provisioning, our developed DRL-based RMSA takes 

advantage of deep reinforcement learning (DRL) 

mechanism to figure out and assign efficient path and 

spectral resource to the lightpaths. Numerical experiments 

are performed on a typical network topology and 

corresponding traditional elastic optical network with the 

shortest path algorithm under the same fiber configurations 

and network conditions is used for benchmarking. The 

attained results show that the network with the DRL-based 

RMSA solution outperforms that of the conventional 

shortest path algorithm significantly and offers a notable 

performance improvement in terms of blocking probability 

and accepted traffic volume. 

II. DYNAMIC RMSA SCHEME USING DEEP 

REINFORCEMENT LEARNING 

A. Dynamic Routing, Modulation format and Spectrum 

Assignment Problem 

In this work, we consider a single fiber elastic optical 

network that can accommodate optical paths (also called 

lightpaths) dynamically and flexibly. The network adopts 

the distance adaptive approach [15] to determine the 

modulation format, m(m∈ [1, 2, 3, 4]), according to the 

physical distance of lightpaths with four typical modulation 

formats of BPSK (m=1), QPSK (m=2), 8-QAM (m=3) and 

16-QAM (m=4). We also assume that there is no spectrum 

conversion capability equipped. 

Let G(V, E, F) denote the elastic optical network 

topology and state, where V and E represent the sets of 

nodes and fiber links, F={Fe,f |e ∈ E, f ∈ [1, W]} contains 

the state of each frequency slot (FS) f on each fiber link e. 

A lightpath request between a source-destination node pair 

(s, d) is modelled as Rt(s, d, b, τ) with s, d∈ E, b Gbps and 

τ denoting the required bandwidth and service duration. 

To accommodate the lightpath Rt, an end-to-end routing  

path between s and d need to be computed and a proper 

modulation format m must be determined while a suitable 

number of spectrally contiguous FS’s (i.e., the spectrum 

contiguous constraint) have to allocated on each link along 

the selected path from s to d according to b and m. Hence, 

the spectrum allocated on different fibers to Rt must be 

aligned.  

Unlike the static RMSA problem where traffic requests 

are known in prior and the objective is to minimize the total 

spectrum usage, in the dynamic RMSA problem (i.e., 

online or dynamic lightpath provisioning), traffic requests 

may arrive and release in real time and need to be 

immediately served upon their arrivals. The dynamic 

RMSA problem, hence, targets minimizing the long-term 

request blocking probability, which is defined as the ratio 

of the number of blocked requests to the total number of 

requests over a period [6]. 

B. DRL-based RMSA Design 

The DRL-based RMSA successively learns the 

optimal RMSA policy based on its perception of network 

states (e.g., topology, spectrum utilization and in-service 

lightpaths) and the feedback from the environment (i.e., 

network operations) using deep reinforcement learning. 

Figure 1 illustrates the operation principles of the 

developed DRL-based RMSA. 

 

 

Fig. 1. DRL-based RMSA scheme with Double DQN. 

When a lightpath request, Rt(s, d, b, τ), arrives (s and 

d are the source and destination nodes, b is the demanded 

data rate and τ is service duration), the RMSA engine 

fetches the current network state, st, and calls the Q-

network to compute the estimated action value (i.e., Q) for 

each RMSA solution of lightpath requests. The neural 

network input is a given state st and the output is the value 

of each function. The action values can be represented by 

Q(st, at; θ), where θ denotes the parameters of the neural 

network, action at ∈ A in the given state. The network 

receives the RMSA policies related to the previous 

operations as feedback and produces an immediate reward 

rt for the agent; then, the network moves to the next state 

st+1. Then, rt, st, at, and st+1 are stored in a replay memory, 

from which the algorithm derives training data for 

updating the DRL agent. Here, there are two independent 

and identical deep neural networks (DQNs), a target DQN 

(Q(st, at; θ’)) and an evaluate DQN (Q(st, at; θ)). The 
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evaluate DQN is utilized to compute the Q value for each 

action, while the target DQN produces the Q values to train 

the parameters of the evaluate DQN. After that, the action 

with the maximum Q value is selected. Both the evaluate 

DQN and the target DQN employ the same neural network 

structure as the basic module, which uses a simple fully 

connected neural network, including one hidden layer. The 

neural network starts in state st and follows the value of 

each action. It attempts to minimize the loss function, L(r). 

At each time step, the agent takes an action and the 

action space is pre-determined at the DRL-based 

formulation phase. Then, the agent receives an observation 

and a reward from the environment. Here, observation is 

defined as the status of the current environment which 

consists of a request and a appropriate status of FS 

utilization. On the other hand, reward is a function 

representing how good the action is. The agent takes 

actions on the basis of the observation, and parameters of 

the agent’s action-decision function, i.e., a deep neural 

network (DNN) is updated to maximize the total number 

of reward. 

One of the important problem is how to define the 

action space; assignable FSs can be varied and rely on 

routing paths. Actually, our DRL-based RMSA adopts the 

mechanism introduced in [16]. RMSA is mapped to 

discrete Action space A. The DRL-based RMSA applies 

K-shortest path algorithm to select one from the K found 

shortest paths, and assigns the spectrum by choose the first 

index of used FSs. Hence, Action space is defined as A={1, 

2, …, W×K, W×K +1}, where W and K are the numbers of 

FSs and paths, respectively. When assignable resources do 

not exist in all K shortest paths, the Action option will be 

Doing Nothing.  The Action of Doing Nothing leads to 

block the lightpath request. A feature vector is a vector of 

characteristics of the current state that an Agent uses as a 

reference when deciding on an Action. Since the states of 

the whole network would be more helpful in improving 

performance, the DRL-based RMSA implements the 

Action-decision function to utilize both entire FS 

utilization tensor and convolutional neural network (CNN).  

The DNN determines which candidate should be used to 

accommodate as many future connection requests as 

possible. To cope with dynamic changes of the assignable 

candidate number, the masking approach is employed. 

Moreover, in order to provide useful information for 

training efficient RSA algorithms, the developed DRL-

based RMSA employs a reward function as following: 

𝑟𝑡 = {
+1       𝑖𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒
−1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

III. NUMERICAL SIMULATIONS 

In this section, we have evaluated the performance of 

the dynamic lightpath provisioning elastic optical network 

using the developed deep reinforcement learning-based 

RMSA algorithm. Numerical experiments are performed 

on a typical physical network topology named US national 

science foundation network (NSFNET) that consists of 14 

nodes and 22 links (as illustrated in Figure 2). 

In our simulations, the network is assumed to be a 

single fiber optical network in which each link includes 

only one optical fiber. The optical fiber capacity is W 

spectrum slots and spectrum slot capacity is BW (W is set 

at 64 and BW is 12.5 GHz); it means that a fiber is able to 

carry maximally 64 spectrum slots and, a slot bandwidth is 

supposed to be 12.5 GHz. The network can set up and 

release optical paths flexibly and dynamically. Modulation 

format of each lightpath is distance-adaptively assigned. In 

the network, optical paths can be modulated by one of four 

typical formats that are BPSK, QPSK, 8-QAM and 16-

QAM. The slot bandwidth and the appropriate optical reach 

of BPSK, QPSK, 8-QAM, and 16-QAM optical signals are 

given in Table I. In our tested network, spectrum 

conversion resource will not be deployed. 

        

Fig. 2. Experimental network topology – NSFNET. 

Moreover, we also applied the following parameters for 

the numerical simulation. Traffic requests are supposed to 

arrive sequentially and follow Poisson distribution with the 

average arrival rate of λ (requests per time unit). 

Distribution of lightpath holding time (mean hold time - 

MHT) is assumed to be a negative exponential one with the 

mean hold time of 1/µ (time units) (µ is fixed at 10-2). 

Consequently, the given network traffic load in Erlangs is 

λ/µ. On the other hand, the capacity of each requested 

lightpath between node pairs is also randomly assigned 

between 25 and 100 Gbps following a uniform distribution. 

Table I summarizes major simulation parameters of the 

experimental network. 

TABLE I. SIMULATION PARAMETERS 

Parameter Value 

Network topology NSFNET 

Number of nodes 14 

Number of links 22 

Spectrum slot number per link 64 

Slot bandwidth 12.5 GHz 

M
o
d

u
la

ti
o

n
 f

o
rm

a
t 

BPSK 
Slot capacity 12.5 Gbps 

Optical reach >2500 km 

QPSK 
Slot capacity 25 Gbps 

Optical reach 2500 km 

8-QAM 
Slot capacity 37.5 Gbps 

Optical reach 1250 km 

16-QAM 
Slot capacity 50 Gbps 

Optical reach 625 km 

Capacity of requested lightpaths 25-100 Gbps 

Mean hold time 100 time units 

 



DEEP REINFORCEMENT LEARNING-BASED DYNAMIC LIGHTPATH PROVISIONING FOR ELASTIC OPTICAL ….   

In our investigation, the deep Q-network includes 2 

Convo. 2 layers (each with 16 convolution kernels), 3 Conv. 

3 layers (each with 1 convolution kernel) and 2 fully 

connected layers ([128,50]).We calculate K = 5 candidate 

paths for each s-d pair, i.e., the number of nodes in the 

output layer is 5, γ and ε are set to be 0.99 and 0.1 

respectively. 

Performance of the developed DRL-based RMSA 

adopted elastic optical network with the capability of 

provisioning dynamic lightpath services is tested and 

measured in terms of connection blocking probability and 

accepted traffic volume. Here, the blocking probability is 

calculated as the ratio of the blocked connection number to 

the total number of lightpaths requested. The relative 

accepted traffic volume is determined as the ratio of the 

traffic volume obtained by the developed network to that of 

corresponding conventional elastic optical network 

utilizing a popular RMSA algorithm, that is the shortest 

path algorithm [4], under the same network configuration. 

Hereafter, the results obtained by using the proposed DRL-

based algorithm and the conventional one will be denoted 

as DRL and Conventional respectively.   

A. Blocking Probability 

In fact, for dynamic lightpath provisioning elastic 
optical network, blocking probability is a key indicator to 
determine the network ability of dynamically and 
effectively providing lightpath services. The less blocking 
probability is, the better network performance is achieved. 
Figure 3 shows the obtained blocking probability of the 
DRL-based RMSA algorithm in comparing to that of the 
conventional shortest path algorithm when the traffic 
arrival rate ranges from 0.1 to 1.0. The attained graphs 
describe that our developed solution outperforms the 
conventional one over all the tested traffic load. It implies 
that the performance of both comparable solutions is 
degraded rapidly as the traffic load is increased however, 
thanks to the use of DDQN for learning and selecting route, 
modulation and spectrum resources, our solution offers 
dramatically less blocking probability, especially in small 
traffic load area. When the traffic load becomes larger, due 
to the spectrum collision, more connection requests are 
refused, in this case the reward function is critically 
decreased (see Figure 4), and this leads to an increase of 
blocking probability.  

A further comparison between the developed DRL-based 

RMSA algorithm and the conventional one, in terms of link 

utilization ratio is described in Figure 5. The proposed 

algorithm attains higher link utilization ratio than the 

conventional one. This means that, with the same traffic 

condition, our algorithm can use the spectrum resource more 

efficiently to help reduce the spectrum collision and enhance 

the network performance. Taking advantage of deep 

reinforcement learning, our solution can wisely select the 

route and spectrum resource to adapt properly with the traffic 

condition. 

 

Fig. 3. Blocking probability. 

 

Fig. 4. Reward function of DRL-based RMSA algorithm. 

 

Fig. 5. Comparison of link utilization ratio. 

B. Relative Accepted Traffic Volume 

In order to assess the efficiency of our developed 

network solution, we have also estimated and compared the 

traffic volume providing by the DRL-based RMSA and that 

of conventional algorithm under the same network 

configuration when the required blocking probability of 10-

2 and 10-3. Here, the simulation results of the network with 

the traditional RMSA algorithm are used as the benchmark 

and, the relative accommodated traffic volumes, the rate 

between the obtained results to that of the appropriate 
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conventional networks, are plotted in Figure 6. 

Consequently, the relative traffic volume of the 

conventional RMSA is a constant (1.0). 

 

Fig. 6. Accepted traffic volume comparison. 

The bar graphs show that, compared to that of the 

conventional network, our developed solution gains a 

significant improvement in terms of the accepted traffic 

volume. With the blocking probability of 10-2, more 32.5% 

traffic can be accommodated by using our solution. The 

enhancement even becomes better with less blocking 

probability, says higher network performance required, up 

to 45% more traffic volume can be carried, with the 

blocking probability of 10-3, by adopting our developed 

algorithm.       

IV. CONCLUSION 

We have investigated dynamic lightpath provisioning-
enable elastic optical networks and applied deep 
reinforcement learning to deal with the routing, modulation 
format and spectrum assignment problem. The networks 
are capable of automatically and dynamically setting-up 
and releasing bandwidth-flexible lightpaths by using a deep 
reinforcement learning mechanism. The developed DRL-
based RMSA algorithm exploits a Double DQN for 
learning the optimal dynamic RMSA policies in elastic 
optical network to improve the network performance. 
Numerical simulation results demonstrate the efficiency of 
our developed network solution. Compared to the 
conventional shortest path algorithm, it can gain more up 
to 32.5% and 45% traffic volume with the blocking 
probability of 10-2 or 10-3, respectively. 
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GIẢI PHÁP CẤP PHÁT PHỔ TẦN ĐỘNG DỰA 

VÀO KỸ THUẬT HỌC TĂNG CƯỜNG SÂU CHO 

MẠNG QUANG LƯỚI BƯỚC SÓNG LINH HOẠT 

 

 Tóm tắt: Trong bài báo này, chúng tôi đã nghiên cứu và 

phát triển một thuật toán định tuyến và gán định dạng điều 

chế và phổ tần (RMSA) dựa vào kỹ thuật học tăng cường 

sâu (DRL) cho mạng quang lưới bước sóng linh hoạt hỗ trợ 

việc cấp phát băng thông động. Nhằm nâng cao hiệu năng 

của mạng, giải pháp RMSA đề xuất đã khai thác cơ chế học 

tăng cường sâu để lựa chọn tuyến đường, khuôn dạng điều 

chế và tài nguyên phổ tần hiệu quả bằng việc học hỏi kinh 

nghiệm cấp phát phổ tần động và linh hoạt trong mạng. 

Phương pháp mô phỏng số được áp dụng để đánh giá hiệu 

năng của giải pháp RMSA dựa trên DRL được đề xuất. Các 

kết quả thu được cho thấy rằng giải pháp mạng được đề 

xuất của chúng tôi vượt trội hơn đáng kể so với thuật toán 

đường đi ngắn nhất thông thường và góp phần cải thiện 
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đáng kể hiệu năng mạng về các thông số xác suất chặn kết 

nối và khả năng chấp nhận lưu lượng. 

 Từ khoá: Học tăng cường sâu, mạng quang lưới bước 

sóng linh hoạt, định tuyến và gán phổ tần, thuật toán điều 

khiển mạng. 
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