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Abstract: In this paper, we develop a deep
reinforcement learning-based routing, modulation format
and spectrum assignment (RMSA) algorithm for elastic
optical networks capable of provisioning dynamically
lightpath services. In order to enhance the network
performance, the developed RMSA exploits deep
reinforcement learning (DRL) mechanism for selecting
efficient route and spectral resource by learning
experiences of dynamic lightpath provisioning. Numerical
simulations have been utilized to estimate the performance
of the elastic optical network applied the proposed DRL-
based RMSA solution. The obtained results demonstrate
that our proposed network solution outperforms the
conventional shortest path algorithm-based one
significantly and offers a notable performance
enhancement in terms of blocking probability and
accepted traffic volume.
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I. INTRODUCTION

To cope with the Internet traffic explosion and the
popular adoption of new networking paradigms,
development of cost-effective, dynamic and heterogeneous
bandwidth-abundant flexible optical backbone networks is
essential [1, 2]. Recently, elastic optical networks (EONS)
have been emerged and realized as one of the most
promising networking technologies for the next-generation
backbone networks [3]. Compared to traditional fixed-grid
(e.g., 50 GHz) wavelength-division multiplexing (WDM)
network, EON enables flexibly setting-up bandwidth-
variable superchannels by grooming series of finer-
granularity subcarriers and adapting the modulation
formats according to the QoT of lightpaths [4, 5]. Thanks
to that, elastic optical networks are capable of provisioning
dynamic bandwidth-flexible end-to-end connection and
offer service providers the flexibility to customize their
infrastructure dynamically according to application
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requirements [6, 7]. In EONSs, routing and spectrum
allocation includes three sub-problems, namely routing,
modulation and spectrum assignment (RMSA/RSA), that is
known as an NP hard. Up to now, many studies have
intensively investigated the routing, modulation and
spectrum assignment (RMSA) problem in order to fully
exploit the benefits of EONs. However, many
technological issues and challenges must be dealt with to
realize and commercialize elastic optical networks due to
the requirements of more complicated network planning
and more sophisticated optical-path provisioning schemes
[4-6].

Furthermore, different from static RMSA problems for
which explicit optimization models can be formulated,
dynamic RMSA problems that target the optimization of
provisioning lightpaths dynamically and flexibly are more
challenging [8-10]. Due to the time-varied arrivals and
departures of requested lightpaths as well as the uncertainty
of future traffic demands, EON state becomes dramatically
destabilized and hence, the efficiency of the optimizations
based on the current state is deteriorated [6, 8].
Unfortunately, the existing works only employ pre-
determined (fixed) RMSA policies regardless of the time-
varying EON states or depend on simple empirical policies
based on manually extracted features, i.e., lack of
comprehensive perceptions of the holistic EON states, and
consequently are unable to achieve real adaptive service
provisioning in EONs.

In the meantime, recent advances in deep reinforcement
learning (DRL) have demonstrated beyond human-level
performance in handling large-scale online control tasks
[11, 12]. The application of DRL in the optical
communication and networking domain has received
intensive research interests and opens a new approach.
DRL parameterizes action policies with deep neural
networks (DNNs) [13, 14] that can perceive complex
system states from high-dimensional input data, such as,
images, and traffic matrices. By accumulating action
experiences from repeated interactions with the target
systems and by reinforcing actions leading to higher
rewards, DRL is able to learn successful policies (i.e.,
correct configurations of the DNNS) progressively. Several
applications of emerging deep reinforcement learning
(DRL) techniques in EONs for enabling an autonomic
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(self-driving) and cognitive networking framework have
been introduced and show a lot of potential [15-18]. This
new approach enables self-learning-based service
provisioning capabilities by employing DRL agents to
learn policies from dynamic network operations to enhance
the overall network performance.

In this paper, we deal with routing, modulation format
and spectrum assignment problem by applying deep
reinforcement learning technique in elastic optical
networks capable of provisioning dynamically lightpath
services. By learning experiences of dynamic lightpath
provisioning, our developed DRL-based RMSA takes
advantage of deep reinforcement learning (DRL)
mechanism to figure out and assign efficient path and
spectral resource to the lightpaths. Numerical experiments
are performed on a typical network topology and
corresponding traditional elastic optical network with the
shortest path algorithm under the same fiber configurations
and network conditions is used for benchmarking. The
attained results show that the network with the DRL-based
RMSA solution outperforms that of the conventional
shortest path algorithm significantly and offers a notable
performance improvement in terms of blocking probability
and accepted traffic volume.

Il. DYNAMIC RMSA SCHEME USING DEEP
REINFORCEMENT LEARNING

A. Dynamic Routing, Modulation format and Spectrum

Assignment Problem

In this work, we consider a single fiber elastic optical
network that can accommodate optical paths (also called
lightpaths) dynamically and flexibly. The network adopts
the distance adaptive approach [15] to determine the
modulation format, m(me [1, 2, 3, 4]), according to the
physical distance of lightpaths with four typical modulation
formats of BPSK (m=1), QPSK (m=2), 8-QAM (m=3) and
16-QAM (m=4). We also assume that there is no spectrum
conversion capability equipped.

Let G(V, E, F) denote the elastic optical network
topology and state, where V and E represent the sets of
nodes and fiber links, F={F¢¢ |e €E, f €[1, W]} contains
the state of each frequency slot (FS) f on each fiber link e.
A lightpath request between a source-destination node pair
(s, d) is modelled as Ry(s, d, b, ) with s, de E, b Gbps and
7 denoting the required bandwidth and service duration.

To accommodate the lightpath R, an end-to-end routing
path between s and d need to be computed and a proper
modulation format m must be determined while a suitable
number of spectrally contiguous FS’s (i.e., the spectrum
contiguous constraint) have to allocated on each link along
the selected path from s to d according to b and m. Hence,
the spectrum allocated on different fibers to R; must be
aligned.

Unlike the static RMSA problem where traffic requests
are known in prior and the objective is to minimize the total
spectrum usage, in the dynamic RMSA problem (i.e.,
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online or dynamic lightpath provisioning), traffic requests
may arrive and release in real time and need to be
immediately served upon their arrivals. The dynamic
RMSA problem, hence, targets minimizing the long-term
request blocking probability, which is defined as the ratio
of the number of blocked requests to the total number of
requests over a period [6].

B. DRL-based RMSA Design

The DRL-based RMSA successively learns the
optimal RMSA policy based on its perception of network
states (e.g., topology, spectrum utilization and in-service
lightpaths) and the feedback from the environment (i.e.,
network operations) using deep reinforcement learning.
Figure 1 illustrates the operation principles of the
developed DRL-based RMSA.
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Fig. 1. DRL-based RMSA scheme with Double DQN.

When a lightpath request, R(s, d, b, z), arrives (s and
d are the source and destination nodes, b is the demanded
data rate and z is service duration), the RMSA engine
fetches the current network state, s;, and calls the Q-
network to compute the estimated action value (i.e., Q) for
each RMSA solution of lightpath requests. The neural
network input is a given state s; and the output is the value
of each function. The action values can be represented by
Q(st, a 8), where 0 denotes the parameters of the neural
network, action a; € A in the given state. The network
receives the RMSA policies related to the previous
operations as feedback and produces an immediate reward
r. for the agent; then, the network moves to the next state
S+1. Then, ry, S, a, and S+ are stored in a replay memory,
from which the algorithm derives training data for
updating the DRL agent. Here, there are two independent
and identical deep neural networks (DQNSs), a target DQN
(Q(sy, ai; 0)) and an evaluate DQN (Q(si, ai 6)). The
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evaluate DQN is utilized to compute the Q value for each
action, while the target DQN produces the Q values to train
the parameters of the evaluate DQN. After that, the action
with the maximum Q value is selected. Both the evaluate
DQN and the target DQN employ the same neural network
structure as the basic module, which uses a simple fully
connected neural network, including one hidden layer. The
neural network starts in state s; and follows the value of
each action. It attempts to minimize the loss function, L(r).

At each time step, the agent takes an action and the
action space is pre-determined at the DRL-based
formulation phase. Then, the agent receives an observation
and a reward from the environment. Here, observation is
defined as the status of the current environment which
consists of a request and a appropriate status of FS
utilization. On the other hand, reward is a function
representing how good the action is. The agent takes
actions on the basis of the observation, and parameters of
the agent’s action-decision function, i.e., a deep neural
network (DNN) is updated to maximize the total number
of reward.

One of the important problem is how to define the
action space; assignable FSs can be varied and rely on
routing paths. Actually, our DRL-based RMSA adopts the
mechanism introduced in [16]. RMSA is mapped to
discrete Action space A. The DRL-based RMSA applies
K-shortest path algorithm to select one from the K found
shortest paths, and assigns the spectrum by choose the first
index of used FSs. Hence, Action space is defined as A={1,
2, ..., WxK, WxK +1}, where W and K are the numbers of
FSs and paths, respectively. When assignable resources do
not exist in all K shortest paths, the Action option will be
Doing Nothing. The Action of Doing Nothing leads to
block the lightpath request. A feature vector is a vector of
characteristics of the current state that an Agent uses as a
reference when deciding on an Action. Since the states of
the whole network would be more helpful in improving
performance, the DRL-based RMSA implements the
Action-decision function to utilize both entire FS

utilization tensor and convolutional neural network (CNN).

The DNN determines which candidate should be used to
accommodate as many future connection requests as
possible. To cope with dynamic changes of the assignable
candidate number, the masking approach is employed.
Moreover, in order to provide useful information for
training efficient RSA algorithms, the developed DRL-
based RMSA employs a reward function as following:

= {+1 if assignable

t -1 otherwise.

1. NUMERICAL SIMULATIONS

In this section, we have evaluated the performance of
the dynamic lightpath provisioning elastic optical network
using the developed deep reinforcement learning-based
RMSA algorithm. Numerical experiments are performed
on a typical physical network topology named US national
science foundation network (NSFNET) that consists of 14
nodes and 22 links (as illustrated in Figure 2).

In our simulations, the network is assumed to be a
single fiber optical network in which each link includes
only one optical fiber. The optical fiber capacity is W
spectrum slots and spectrum slot capacity is BW (W is set

SO 04 (CS.01) 2022

TAP CHI KHOA HOC CONG NGHE THONG TIN VA TRUYEN THONG

at 64 and BW is 12.5 GHz); it means that a fiber is able to
carry maximally 64 spectrum slots and, a slot bandwidth is
supposed to be 12.5 GHz. The network can set up and
release optical paths flexibly and dynamically. Modulation
format of each lightpath is distance-adaptively assigned. In
the network, optical paths can be modulated by one of four
typical formats that are BPSK, QPSK, 8-QAM and 16-
QAM. The slot bandwidth and the appropriate optical reach
of BPSK, QPSK, 8-QAM, and 16-QAM optical signals are
given in Table I. In our tested network, spectrum
conversion resource will not be deployed.

Fig. 2. Experimental network topology — NSFNET.

Moreover, we also applied the following parameters for
the numerical simulation. Traffic requests are supposed to
arrive sequentially and follow Poisson distribution with the
average arrival rate of 1 (requests per time unit).
Distribution of lightpath holding time (mean hold time -
MHT) is assumed to be a negative exponential one with the
mean hold time of 1/u (time units) (u is fixed at 10?).
Consequently, the given network traffic load in Erlangs is
AMu. On the other hand, the capacity of each requested
lightpath between node pairs is also randomly assigned
between 25 and 100 Gbps following a uniform distribution.
Table 1 summarizes major simulation parameters of the
experimental network.

TABLE |. SIMULATION PARAMETERS

Parameter Value

Network topology NSFNET
Number of nodes 14
Number of links 22
Spectrum slot number per link 64
Slot bandwidth 12.5 GHz

Slot capacity 12.5 Ghps

BPSK

Optical reach >2500 km
é Slot capacity 25 Gbps
S QPSK
pe Optical reach 2500 km
o
k) Slot capacity 37.5 Gbps
3 8-QAM
S Optical reach 1250 km

Slot capacity 50 Gbps

16-QAM

Optical reach 625 km
Capacity of requested lightpaths 25-100 Ghps
Mean hold time 100 time units
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In our investigation, the deep Q-network includes 2

Convo. 2 layers (each with 16 convolution kernels), 3 Conv.

3 layers (each with 1 convolution kernel) and 2 fully
connected layers ([128,50]).We calculate K = 5 candidate
paths for each s-d pair, i.e., the number of nodes in the
output layer is 5, y and ¢ are set to be 0.99 and 0.1
respectively.

Performance of the developed DRL-based RMSA
adopted elastic optical network with the capability of
provisioning dynamic lightpath services is tested and
measured in terms of connection blocking probability and
accepted traffic volume. Here, the blocking probability is
calculated as the ratio of the blocked connection number to
the total number of lightpaths requested. The relative
accepted traffic volume is determined as the ratio of the
traffic volume obtained by the developed network to that of
corresponding conventional elastic optical network
utilizing a popular RMSA algorithm, that is the shortest
path algorithm [4], under the same network configuration.
Hereafter, the results obtained by using the proposed DRL-
based algorithm and the conventional one will be denoted
as DRL and Conventional respectively.

A. Blocking Probability

In fact, for dynamic lightpath provisioning elastic
optical network, blocking probability is a key indicator to
determine the network ability of dynamically and
effectively providing lightpath services. The less blocking
probability is, the better network performance is achieved.
Figure 3 shows the obtained blocking probability of the
DRL-based RMSA algorithm in comparing to that of the
conventional shortest path algorithm when the traffic
arrival rate ranges from 0.1 to 1.0. The attained graphs
describe that our developed solution outperforms the
conventional one over all the tested traffic load. It implies
that the performance of both comparable solutions is
degraded rapidly as the traffic load is increased however,
thanks to the use of DDQN for learning and selecting route,
modulation and spectrum resources, our solution offers
dramatically less blocking probability, especially in small
traffic load area. When the traffic load becomes larger, due
to the spectrum collision, more connection requests are
refused, in this case the reward function is critically
decreased (see Figure 4), and this leads to an increase of
blocking probability.

A further comparison between the developed DRL-based
RMSA algorithm and the conventional one, in terms of link
utilization ratio is described in Figure 5. The proposed
algorithm attains higher link utilization ratio than the
conventional one. This means that, with the same traffic
condition, our algorithm can use the spectrum resource more
efficiently to help reduce the spectrum collision and enhance
the network performance. Taking advantage of deep
reinforcement learning, our solution can wisely select the
route and spectrum resource to adapt properly with the traffic
condition.
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Fig. 5. Comparison of link utilization ratio.

B. Relative Accepted Traffic Volume

In order to assess the efficiency of our developed
network solution, we have also estimated and compared the
traffic volume providing by the DRL-based RMSA and that
of conventional algorithm under the same network
configuration when the required blocking probability of 10
2 and 1073, Here, the simulation results of the network with
the traditional RMSA algorithm are used as the benchmark
and, the relative accommodated traffic volumes, the rate
between the obtained results to that of the appropriate
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conventional networks, are plotted in Figure 6.
Consequently, the relative traffic volume of the
conventional RMSA is a constant (1.0).
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Fig. 6. Accepted traffic volume comparison.

The bar graphs show that, compared to that of the
conventional network, our developed solution gains a
significant improvement in terms of the accepted traffic
volume. With the blocking probability of 102, more 32.5%
traffic can be accommodated by using our solution. The
enhancement even becomes better with less blocking
probability, says higher network performance required, up
to 45% more traffic volume can be carried, with the
blocking probability of 102, by adopting our developed
algorithm.

IV. CONCLUSION

We have investigated dynamic lightpath provisioning-
enable elastic optical networks and applied deep
reinforcement learning to deal with the routing, modulation
format and spectrum assignment problem. The networks
are capable of automatically and dynamically setting-up
and releasing bandwidth-flexible lightpaths by using a deep
reinforcement learning mechanism. The developed DRL-
based RMSA algorithm exploits a Double DQN for
learning the optimal dynamic RMSA policies in elastic
optical network to improve the network performance.
Numerical simulation results demonstrate the efficiency of
our developed network solution. Compared to the
conventional shortest path algorithm, it can gain more up
to 32.5% and 45% traffic volume with the blocking
probability of 102 or 103, respectively.
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GIAI PHAP CAP PHAT PHO TAN PONG DUA
VAO KY THUAT HQC TANG CUONG SAU CHO
MANG QUANG LUOI BUOC SONG LINH HOAT

T6m tat: Trong bai bao nay, chung t6i da nghién ciiu va
phét trién mot thuat toan dinh tuyén va gan dinh dang diéu
ché va pho tan (RMSA) duya vao k§ thuat hoc tang cuong
sau (DRL) cho mang quang ludi budc song linh hoat hd tro
viéc cip phat bang théng dong. Nhim nang cao hiéu ning
ctia mang, giai phap RMSA d& xuét da khai thac co ché hoc
tang cuong sau dé lya chon tuyén duong, khuén dang diéu
ché va tai nguyén phé tan hiéu qua bang viéc hoc hoi kinh
nghiém cép phét phd tan dong va linh hoat trong mang.
Phuong phap mé phong s6 duoc &p dung dé danh gia hiéu
nang cua giai phap RMSA dura trén DRL duoc dé xuat. Cac
két qua thu duoc cho thdy riang giai phédp mang duoc dé
Xuit ciia chiing tdi vuot troi hon dang ké so véi thuat toan
duong di ngén nhét thong thuong va gép phan cai thién
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dang ké hiéu nang mang vé cac théng sd xac suat chan két

ndi va kha nang chap nhan luu lugng.

Tir khod: Hoc ting cudng sau, mang quang ludi budc
song linh hoat, dinh tuyén va gan pho tan, thuat toan dieu

khién mang.
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