

Abstract— The increased demand for higher resolution and

detailed SAR imaging builds up a pressure on the processing

power of the existing systems for real time or near real time

processing. Exploitation of GPU processing power could

suffice the increasing demands in processing. The

processing of initial SAR systems was based on the

principles of Fourier Optics. Lenses provided a real time

two-dimensional Fourier transform of the data This

document comprises results and analysis of parallelizing

Range Doppler and Chirp scaling algorithms for SAR

imaging and comparison of computational time over

traditional CPU and GPU platform. The results shows that

RDA in its essence gives better speed-up than CSA basically

due to its less complex manipulations.

Keywords—CUDA, FFT, RDA, CSA, execution time.

I. INTRODUCTION

Synthetic Aperture radar is widely used; especially

due its special benefits like all weather, day and night

imaging capabilities over optical imaging. It finds

applications in environmental monitoring, disaster

management, military and defense, remote sensing etc.

[5-6] Range Doppler and chirp scaling algorithms are

applied to the raw data to produce image in visible format.

However, the process is highly cumbersome involving

large number of computations and difficult for real time

practical realizations.
A further increase in the clock frequency in von

Neumann architecture is no longer feasible and the only

way to increase the processing power is to switch to

alternatives like parallel computing machines. Many

existing SAR processors are designed with special DSP

processors such as TigerSharc TS201 [4], are in fact very

expensive, power consuming and difficult to implement.

The availability of technologies like CUDA which help

exploiting power of the GPUs, algorithms can be

parallelized over such vector machines.
GPU is intended to solve problems involving large

Corresponding author: Le Tien Dung, email: ltdung@vnsc.org.vn

data. The processing capabilities of GPU has increased

drastically over last decade. For several years

programmers used to program GPU using languages like

Cg, GLSL and HLSL to program GPU but such

languages needed high knowledge of hardware and of

Application Programming Interface (API) of the GPU.

With the launch of CUDA and its accelerated libraries,

the NVIDIA CUDA complier (NVCC) and debugger are

available on both Windows and Linux platform. With the

windows platform it can be linked with Microsoft visual

studio and the facilities of debugging and compiling are

available while on Linux it uses NVCC along with GCC

complier to generate applications. The availability of

tools like Visual Profiler for the GPU accelerated

application allows us to timestamp various kernels

executed on GPU and analyze the program effectively.
We have optimized range Doppler and chirp scaling

algorithms for SAR which provides increased speed up as

compared to the speed up given by [7], which uses

multiple GPU platform utilizing higher resources. On our

part we use a single GPU with a high level of

optimization.
The Radar Remote sensing algorithms involve

function like FFTs, normalizations and convolution or

match filtering in 2 different directions. The basic process

i.e. multiplication and accumulation, is usually 32 bit

floating point calculations.

II. RANGE DOPPLER ALGORITHM

There are three main steps in implementing RDA:

range compression, range cell migration and azimuth

compression. Processing steps are illustarted in Fig. 1(a)

and all detailed formulas can be found in [9]. We begin

by considering the low squint case for presenting the

basic RDA, so the SRC is not required in this derivation.

For a center frequency f0 and chirp FM rate of Kr, the

demodulated radar signal s0(τ, η) received from a point

target can be modeled as

Le Tien Dung*, Vu Viet Phuong*

* Vietnam National Satellite Center, VNSC

Vietnam Academy of Science and Technology, VAST

PARALLELIZATION OF SYNTHETIC

APERTURE RADAR (SAR) IMAGE

FOCUSING ALGORITHMS ON GPU

Số 01 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 69

Admin
Text Box
PARALLELIZATION OF SYNTHETICAPERTURE RADAR (SAR) IMAGEFOCUSING ALGORITHMS ON GPU

Admin
Text Box
Corresponding author: Le Tien DungEmail: ltdung@vnsc.org.vnReceved: 07/2017, corrected: 08/2017, accepted: 09/2017

Admin
Text Box
Le Tien Dung, Vu Viet Phuong

Admin
Line

2 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG, TẬP 1, KỲ 1, 2016

𝑠0(𝜏, 𝜂) = 𝐴0 ∙ 𝜔𝑟 [𝜏 −
2𝑅(𝜂)

𝑐
] 𝜔𝑎(𝜂 −

𝜂𝑐) exp {−
𝑗4𝜋𝑓0𝑅(𝜂)

𝑐
} . exp {𝑗𝐾𝑟 (𝜏 −

2𝑅(𝜂)

𝑐
)

2

}
(1)

where A0 is an arbitrary complex constant, τ is a range

time, η is azimuth time and ηc is a beam center offset time.

The range and azimuth envelopes are expressed by 𝜔𝑟(τ)

and 𝜔𝑎(η). The

instantaneous slant range R(η) is given by

𝑅(𝜂) = √𝑅0
2 + 𝑉𝑟

2𝜂 2 (2)

where R0 is the slant range of the zero Doppler of the cross

range axis.

Fig. 1. Flow chart of the (a) RDA, (b) CSA

The output of the range matched filter is the range

compressed signal that is interpolated via RCMC and

given by

𝑆2(𝜏, 𝑓𝜂) = 𝐴0𝑝𝑟 [𝜏 −
2𝑅0

𝑐
] 𝑊𝑎(𝑓𝜂 − 𝑓𝜂𝑐) ∙

𝑒𝑥𝑝 {−𝑗
4𝜋𝑓0𝑅0

𝑐
} ∙ 𝑒𝑥𝑝 {𝑗𝜋

𝑓𝜂
2

𝐾𝑎
}

(3)

𝑆2(𝜏, 𝑓𝜂) is the Fourier transformed signal via azimuth

FFT and RCMC is performed, but without azimuth

matched filtering. The matched filter Haz(fη) is the

complex conjugate of the last

exponential term in 𝑆2(𝜏, 𝑓𝜂) as

𝐻𝑎𝑧(𝑓𝜂) = 𝑒𝑥𝑝 {−𝑗𝜋
𝑓𝜂

2

𝐾𝑎

} (4)

After azimuth matched filtering and IFFT operation, then

compression is completed as

𝑠𝑎𝑐(𝜏, 𝜂) = 𝐴0𝑝𝑟 [𝜏 −
2𝑅0

𝑐
] 𝑝𝑎(𝜂)

∙ 𝑒𝑥𝑝 {−𝑗
4𝜋𝑓0𝑅0

𝑐
}

∙ 𝑒𝑥𝑝{𝑗2𝜋𝑓𝜂𝑐𝜂}

(5)

Where 𝑝𝑎 is the amplitude of the azimuth impulse which

is similar to 𝑝𝑟.

III. CHIRP SCALING ALGORITHM

There are a lot of similarities between CSA and RDA.

Chirp Scaling factor which affects the FM rate can be

taken as the main difference of CSA. All processing steps

are listed in Fig. 1(b) and formulas are given in [9]. The

scaling function is given by

𝑆𝑠𝑐(𝜏′, 𝑓𝜂) = 𝑒𝑥𝑝 {𝑗𝜋𝐾𝑚 [
𝐷(𝑓𝜂,𝑉𝑟𝑟𝑒𝑓

)

𝐷(𝑓𝜂𝑟𝑒𝑓
,𝑉𝑟𝑟𝑒𝑓

)
−

1] (𝜏′)2}

(6)

Where

𝜏′ = 𝜏 −
2𝑅𝑟𝑒𝑓

𝑐𝐷(𝑓𝜂, 𝑉𝑟𝑟𝑒𝑓
)
 (7)

CSA starts with azimuth FFT of the demodulated radar

signal s0. The FM rate is gathered from the result of the

azimuth FFT as

𝐾𝑚 =
𝐾𝑟

1 − 𝐾𝑟

𝑐𝑅0𝑓𝜂
2

2𝑉𝑟
2𝑓0

2𝐷3(𝑓𝜂, 𝑉𝑟)

(8)

where D(fη, Vr) is the migration parameter expressed as

𝐷(𝑓𝜂, 𝑉𝑟) = √1 −
𝑐2𝑓𝜂

2

4𝑉𝑟
2𝑓0

2 (9)

After the azimuth FFT of the Eq.(1), the RD domain

signal is multiplied by the scaling function given in

Eq.(6). Therefore, we get the scaled signal as

𝑆1(𝜏, 𝑓𝜂) = 𝑆𝑠𝑐(𝜏′, 𝑓𝜂)𝑆𝑟𝑑(𝜏, 𝑓𝜂) (10)

Then a range FT is performed. When a range matched

filtering and bulk RCMC is applied to the Fourier

transformed data, the range-compensated signal in the

RD domain is obtained. After this, a range IFFT is

performed:

𝑆4(𝜏, 𝑓𝜂)

= 𝐴2𝑝𝑟 (𝜏 −
2𝑅0

𝑐𝐷(𝑓𝜂𝑟𝑒𝑓
, 𝑉𝑟𝑟𝑒𝑓

)
) 𝑊𝑎(𝑓𝜂 − 𝑓𝜂𝑐)

∙ 𝑒𝑥𝑝 {−𝑗
4𝜋𝑓0𝑅0𝐷(𝑓𝜂, 𝑉𝑟)

𝑐
}

∙ 𝑒𝑥𝑝 {−𝑗
4𝜋𝐾𝑚

𝑐2
[1 −

𝐷(𝑓𝜂, 𝑉𝑟𝑟𝑒𝑓
)

𝐷(𝑓𝜂𝑟𝑒𝑓
, 𝑉𝑟𝑟𝑒𝑓

)
]

∙ [
𝑅0

𝐷(𝑓𝜂, 𝑉𝑟)
−

𝑅𝑟𝑒𝑓

𝐷(𝑓𝜂𝑟𝑒𝑓
, 𝑉𝑟𝑟𝑒𝑓

)
]

2

}

(11)

where 𝐴2 is complex constant. In this equation, the

complex conjugate of the first exponential term is the

azimuth matched filter and the complex conjugate of the

Số 01 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 70

Admin
Text Box
PARALLELIZATION OF SYNTHETIC APERTURE RADAR (SAR) IMAGE FOCUSING...

Admin
Line

second exponential term is the residual phase correction

multiplier. After the azimuth compression and residual

phase correction, the final data is transformed back to the

azimuth time domain as the compressed signal as

𝑆5(𝜏, 𝑓𝜂) = 𝐴4𝑝𝑟 (𝜏 −

2𝑅0

𝑐𝐷(𝑓𝜂𝑟𝑒𝑓
,𝑉𝑟𝑟𝑒𝑓

)
) 𝑝𝑎(𝜂 − 𝜂𝑐)𝑒𝑥𝑝{𝑗𝜃(𝜏, 𝜂)}

(12)

Where 𝑝𝑎(𝜂) is the IFFT of 𝑊𝑎(𝑓𝜂) and 𝜃(𝜏, 𝜂) is the

target phase.

IV. EXPERIMENTAL SETUP

The workstation consists of core i7 CPU and 32 GB

of RAM memory with 500 GB of disk memory. The

CPU-GPU link is of PCIe x16 Gen2 and power supply is

650W switch mode power supply (SMPS).
The GPU device used in the experiment is NVIDIA

GTX770. [2]The specifications are as listed below:
 CUDA Cores: 1536
 Frequency of cores: 1.05 GHz
 Double precision[9] floating point

performance (peak): 134 Gflops.
 Single precision floating point performance

(peak): 3.21 Tflops.
 Total dedicated memory: 4GB GDDR5
 Memory speed: 1.11 Ghz
 Memory interface: 256-bit
 Memory bandwidth: 224.3 Gb/s
 System interface: PCIe x16 Gen3
 ECC memory[10]: Offers protection of data

in memory to enhance data integrity and
reliability for applications. Register files,
L1/L2 caches, shared memory and DRAM
all are ECC
(Error Checking & Correction) protected.

 Parallel Data Cache: This includes a
configurable L1 cache per SMX block and a

unified L2 cache for all of the processor

cores.
 Asynchronous transfer: Turbochargers

system performance by transferring data

over the PCIe bus while the computing cores

are crunching other data

Software platform includes
 Microsoft Visual Studio 2010

 Nvidia Cuda Toolkit 5.5 [11]

 Nvidia Parallel Nsight 3.1

V. PARALLEL IMPLEMENTATION

A. Data Specifications
The data is generated by sending the reference signal

from the satellite and collecting the reflected signals back

and transmitting the collected data back to the earth

station.
The data under test here consists of 8k samples of

reflected signals of 16k samples each. Each sample

consists of real and imaginary part.
B. Range Compression

[1]Range compression is done by taking convolution of

the reflected signal with the known reference signal in time

domain. But in frequency domain it comprises taking 16k

point fast Fourier transform (FFT) of each reflected signal

and the reference signal. The reference signal is then

conjugated. Both vectors- data vector and conjugated

reference- are multiplied sample to sample and then an

inverse FFT of the resultant vector is done. It is then

normalized by dividing it with the total number of FFT

points. This process is done for all the 8k reflected signals.

C. Corner Turn or Matrix transpose
Now the 8k x 16k matrix is transposed by turning each

column is into row and each row into column. This

transposed matrix is then sent for Azimuth Compression.
D. Azimuth Compression

Azimuth compression involves three steps which are

performed for 16k rows.
1) Calculating number of azimuth replica points [1]It

involves generation of azimuth replica signal by
calculating numbers of azimuth samples for all rows (i.e.

16k rows after taking the transpose). The number of

azimuth samples for each row is calculated depending

upon parameters like beam width of satellite antenna,

velocity of satellite, the distance between the satellite and

the location where the signal is incident, frequency of

operation and chip rate.
2) Calculating replica signal
Once the number of samples is calculated the replica

signal is generated which is an exponential function of pi,

chip rate and square of the pulse repetition frequency.
3) Match Filtering
Now the convolution in the time domain is carried out

i.e. conjugated multiplication in frequency domain with

8k FFT points. This process is carried out for all the 16k

rows. Then inverse FFT and normalizations are carried

out.
E. Back Transpose and absolute value

The transpose of the resultant matrix is taken and

absolute value of each sample is calculated and a bit file

is written. The bit file can be imported to an image

viewer.

Each step in itself involves large portion of

instructions that can be parallelized. Below are the steps

for implementing RDA & CSA on GPU:

Steps for applying RDA on GPU:
 CUDA Memory Copy (Host to Device) copies

the complex data and the range compression

replica signal to the device over PCI express.
 CUDA FFT kernel for range compression uses

cufft library for implementing complex to

complex FFT.

 Range Compression match filter kernel does

match filtering of the data samples.

 Cuda IFFT post range compression computes

inverse FFT using cufft library

Số 01 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 71

Admin
Line

Admin
Text Box
Le Tien Dung, Vu Viet Phuong

4 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG, TẬP 1, KỲ 1, 2016

 Matrix transpose and normalization kernel

normalize the data vector after inverse FFT and

take matrix transpose.
 Cuda FFT for azimuth compression computes

FFT of transposed matrix using cufft library.
 Azimuth replica generation kernel generates the

azimuth replica signal in time domain using

complex exponential function.
 Cuda FFT for Azimuth replica performs FFT of the

replica signal using cufft library.

 Azimuth match filtering kernel does match

filtering in the azimuth direction of the data

vector.
 Cuda IFFT post azimuth compression kernel

computes inverse FFT after azimuth

compression

 Matrix transpose and normalization kernel

normalize the data vector after inverse FFT post

azimuth compression and take matrix transpose.
 Cuda memory copy (Device to host) copies the

computed image vector to the host memory.

Steps for applying CSA on GPU:

 All the constants need to be used into the

algorithm have to be defined in the beginning.

 We need to store the data into some variable by

firstly reading it and making a matrix of that.
 Azimuth FFT does FFT of all data vectors into

the azimuth direction.
 Then we need to multiply the data with Function

of Chirp Scaling for differential RCMC in this

way range scaling will be done.

 Range FFT does FFT of all data vectors into the

range direction
 Then we need to multiply the data with

Reference Function multiply for Bulk RCMC,

RC and SRC, in this way Bulk RCMC is

performed.

 Range IFFT will transform the data back into the

range time azimuth frequency which is range

Doppler domain.

 Then we need to multiply the data with Azimuth
Compression and phase correction function
which indeed does the Angle Correction

 Then we need to multiply data with the IFFT
function which indeed does the Azimuth

Compression.
 Azimuth IFFT which transforms the data back

into
 Visualization of results

All these kernels are executed sequentially on the

device when called from the host side. In addition to this

the kernel computations are done in place ensuring

efficient use of device memory.

VI. OPTIMIZATION

For the purpose of achieving higher throughput and

peak performance various optimization techniques are

used. It ensures 100% utilization of the GPU cores and

minimum GPU ideal time during the program execution.

 A. Block Size and Grid size
Due to linear nature of each reflected sample, a single

dimension block is preferred containing 1024 threads per

block. As the number of threads is a multiple of 32, the

efficiency is higher. The wrap schedulers schedule 32

threads per wrap in the device. [3]Hence the number of

threads being a multiple of 32 ensures that no core would

remain free during any of the wrap.
The grid is also taken in single dimension as an array

of blocks and is decided by the number of total data size

and number of threads per block.
B. Shared memory per block

The access to the global memory of the device is

relatively slow compared to the shared memory per

block. [3]The access to the shared memory is 10x faster

compared to the global memory. But the amount of

shared memory is limited by the size of the cache

memory; hence too much use of the shared memory

restricts the optimization.
But optimized use of shared memory speeds up the

kernel execution thus reduces the execution time. The

optimized amount of the shared memory varies from

device to device and their computation capabilities.
C. Registers per thread

The number of registers per thread also controls the

performance of the processing units. [3]Large number of

registers per thread drastically reduces the performance

but as the registers access is 100x faster than the global

memory access and so the optimized use of registers

increases the performance.
D. Use of constant memory

The constant memory is located in the cache and is 10

x faster than the global memory. The reference signal is

usually placed in the constant memory and hence

increases the performance.
E. Use of special function units (SFU) available

in architecture

The Nvidia Fermi architecture contains special

hardware units to compute mathematical functions like

sine and cosine. The hardware functions calculates up

to 8 terms of the required trigonometric series as

compared to the software functions which compute up

to 20 terms, but when the demand for accuracy is of
single precision floating point the SFU can provide high

performance compared to the software functions.
F. Use of CUFFT and NPP library of NVIDIA

The use of highly accelerated libraries like CUFFT

and NPP available with CUDA toolkit provides a high

level of optimization. The CUFFT library has functions

for implementing 1D, 2D, 3D FFTs. The NPP library

has functions for signal processing like convolution,

scaling, shifting etc.

VII. RESULTS AND ANALYSIS

In this section we intend to discuss the results of this

parallel implementation. Section A. shows the CPU and

GPU comparison. which are computed for image of

Số 01 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 72

Admin
Text Box
PARALLELIZATION OF SYNTHETIC APERTURE RADAR (SAR) IMAGE FOCUSING...

Admin
Line

resolution 4096 x 4096.
Comparison of execution time of CPU and GPU The

table shows the execution time in seconds of various

image resolutions for RDA and CSA . As the amount of

data increases, the speed up also increases. This is due

to two basic reasons.
· The overhead of calling the GPU kernel is

divided among a large data.
· The percentage of GPU idle time which is out

of the total execution time gets reduced.

Table 1: execution time of CPU and GPU platform for RDA

Image 4096 x 8192 x 8192 x 16384 x

Size 4096 4096 8192 8192

CPU 238.97 350.940 853.896 2108.639

Time

(Seconds)

GPU 0.593 0.858 1.544 2.839

Time

(Seconds)

Speed up 403x 409x 553x 748x

Table 2: execution time of CPU and GPU platform for CSA

Image 4096 x 8192 x 8192 x 16384 x

Size 4096 4096 8192 8192

CPU 256.65 363.92 923.23 2403.51

Time

(Seconds)

GPU 0.731 1.156 2.142 3.325

Time

(Seconds)

Speed up 351x 314x 431x 722x

VIII. CONCLUSION

Range Doppler and Chirp scaling both are reasonable

approaches for SAR data to its precision processing.

While Chirp scaling algorithm is slightly more complex

and takes more time in its implementation but promises

better resolution in some extreme cases. Chirp Scaling

algorithm is more phase preserving and it avoids

computationally extensive and complicated interpolation

used by the Range Doppler Algorithm.

ACKNOWLEDGMENT

We would like to acknowledge the Vietnam National

Satelite Center (VNSC) for supporting.

REFERENCES
[1] Curlander, J.C. and McDonough, R.N., 199 1, Synthetic Aperture

Radar - Systems and Signal Processing, J. Wiley & Sons, USA.

[2] Nvidia Tesla C2070 Whitepaper.
[3] Programming Massively parallel processors – David Kirk,

Wenmei Hwu

[4] BabuRao Kodavati, Jagan MohanaRao malla, Tholada AppaRao,
T.Sridher, “Development of moving target detection algorithm

using ADSP TS201 DSP Processor”, International Journal of

Engineering Science and technology Vol.2(8),3355-3363,2010
[5] M. Soumekh, “Moving target detection in foliage using along

track monopulse synthetic aperture radar imaging”, IEEE

transactions on Image Processing, Vol. 6, Issue: 8, p 1148 – 1163,
Aug 1997.

[6] Ritesh Kumar Sharma , B.Saravana Kumar, Nilesh M. Desai, V.R.

Gujraty, “SAR for disaster management “, IEEE Aerospace and
electronic system magazine, v23, n 6, p 4-9, June 2008

[7] Xia Ning, Chunmao Yeh, Bin Zhou, Wei Gao, Jian Yang

“Multiple-GPU Accelerated Range-Doppler Algorithm for
Synthetic Aperture Radar Imaging”

[8] http://en.wikipedia.org/wiki/PCI_Express

[9] http://en.wikipedia.org/wiki/Double-
precision_floatingpoint_format

[10] http://en.wikipedia.org/wiki/ECC_memory

[11] http://developer.nvidia.com/cuda/cuda-downloads
[12] Alberto Moreira,Josef Mittermayer and Rolf Scheiber “Extended

Chirp Scaling Algorithm for Air- and Spaceborne SAR Data
Processing in Stripmap and ScanSAR Imaging Modes” , IEEE

Transactions On Geoscience And Remote Sensing ,Vol. 34, No.

5,pp.1123-1133,Sepetember 1996.
[13] Tan Gewei, Pan Guangwu, Lin Wei, “Improved Chirp Scaling

Algorithm Based on Fractional Fourier Transform and Motion

Compensation”, The Open Automation and Control Systems
Journal, Vol 7, pp. 431-440, 2015.

[14] Le Tien Dung, Vu Viet Phuong, “A Modified Range Migration

Algorithm of geosynchronous earth orbit Synthetic Aperture
Radar echo data”, Proc. of COMNAVI 2015, Hanoi University of

Science and Technology , Hanoi, pp. 47-51, 2015.

[15] Le Tien Dung, Vu Viet Phuong,” Research on the relationship
between the parameters of Synthetic Aperture Radar (SAR)

system on small satellite”, Can Tho University Journal of Science,

Special issue: Information Technology, pp. 55-60, 2015.
[16] I.G . Cumming and F.H. Wong,” Digital Processing of Synthetic

Aperture Radar Data: Algorithms and Implementation” Artech

House Publishers, first edition, 2005.

Số 01 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 73

Admin
Text Box
Le Tien Dung, Vu Viet Phuong

Admin
Line

