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Abstract - This paper proposes a low-voltage ride-

through (LVRT) capability for a doubly-fed induction 

generator (DFIG) wind turbine (WT) system. With the 

proposed method, series grid-side converter (SGSC) in 

which its DC-side connected at the DC bus of the back-to-

back converters and its AC-side connected in series with 

line through transformer have been applied, enables to 

compensate a voltage response of the system during the 

grid faults and to reduce the capital cost. A control 

algorithm for SGSC consisting of both positive- sequence 

component voltage controllers based on sliding mode 

control (SMC) and negative - sequence component 

voltage controllers based on proportional integral (PI) 

control is performed in the dq synchronous reference 

frame. Also, to protect the DC capacitor from its 

overvoltage, a braking chopper has been employed. The 

simulation results for 2 MW-DFIG wind turbine system 

with the voltage compensation at the grid faults are 

presented, give as good performance as those without grid 

faults. 

Keywords - Doubly-fed induction generator, low-

voltage ride-through, series voltage-source converter, 

voltage sag, wind turbine. 

 

I. INTRODUCTION 
 

 In recent years, renewable energy has been paid a 
considerable attention, since the fossil fuels are being 
exhausted and environmental issues have become more 
seriously. Wind energy is considered as one of the most 
important renewable energy sources, where the significant 
penetration of wind power capacity may cause some 
problems in the power system such as grid instability, 
unbalance, and frequency variation [1]- [2]. 

 A doubly fed induction generator (DFIG) is a common 
subsystem for large variable speed wind turbines in which 
the stator windings are directly connected to the grid and 
the rotor windings are served as a power interface between 

the rotor windings and the grid through by back-to-back 
pulse-width modulation (PWM) converter. The power 
rating of the back-to-back converter is typically designed 
as 30% of nominal rating of the wind turbine and mainly 
depends on the speed operation range of the DFIG. Thus, 
deep voltage sags and the stator flux cause a considerable 
electrical stress on the rotor-side converter and thereby 
increase mechanical stress on the gearbox as well [1 - 2]. 

The grid codes require a low-voltage ride-through 
(LVRT) capability of the wind turbine system. For several 
national grid codes, the wind power systems should stay 
connected to the grid for the grid fault conditions, as 
illustrated in Figure 1 [3]. 

To improve the fault handling capacity and protect the 
DFIG converter from high rotor current during grid faults, 
a crowbar is usually adopted to limit the high rotor 
currents and rotor voltages [4]-[12]. In [11], the behavior 
of DFIG and the low voltage ride through capability have 
been investigated, when an active crowbar is connected 
between the rotor side of the DFIG and the rotor-side 
converter (RSC) by short-circuiting the rotor temporarily. 
It was found that DFIG allows the reactive support to the 
power grid during both the normal and grid fault 
conditions, and this support is relatively larger when a 
voltage controller is used and the wind generator operates 
with the light load, instead of constant power factor 
control of the DFIG. Also, a strategy of the coordinated 
crowbar and braking chopper is suggested to reduce 
undesirable fault effects by contributing to the grid voltage 
control during the grid fault [12].  The crowbar technology 
and the braking resistor do not fulfill the grid codes during 
the duration of the activation of the braking resistor or the 
crowbar. To satisfy the grid codes, static synchronous 
compensator (STATCOM) and dynamic voltage restorer 
(DVR) to enhance the ride-through capability of wind 
turbines or wind farms [13] – [20]. STATCOM, known as 
shunt voltage compensation, is connected in parallel to the 
line, while DVR, referred as series voltage compensation, 
is connected in series with the line via the transformer. 
However, STATCOM can not cope with deep voltage 
fault since it is based on shunt compensation. Meanwhile, 
DVR, a series compensator, would be much more effective 
to restore voltage in strong grid utility. Nevertheless, the 
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cost of the DVR is so high to solve this problem 
practically.  

In this paper, the application of a series grid-side 
converter (SGSC) that is connected to a wind-turbine-
driven DFIG system to allow uninterruptible fault ride-
through capability of voltage dips fulfilling the grid code 
requirements is investigated. With the proposed method, 
DC-side of SGSC is connected to the DC bus of the back-
to-back converters, instead of using an additional diode 
rectifier, while its AC-side is connected in series with line 

through transformer. Thus, this can reduce the capital cost, 
instead of using an expensive DVR.  Also, for SGSC 
control, a positive- sequence component voltage 
controllers based on sliding mode control (SMC) and 
negative - sequence component voltage controllers based 
on proportional integral (PI) control are performed in the 
dq synchronous reference frame, from which the SGSC 
can compensate the faulty line voltage well. Simulation 
results for a 2 MW-DFIG wind turbine system are 
provided, gives as good performance as those without grid 
faults.    
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Figure 1.  National grid codes [3]. 
 

II.   SYSTEM MODELING  
 

 A single-line schematic of the DFIG with SGSC is 
shown in Figure 2. As can be seen in a conventional 
DFIG, the rotor windings of the machine are accessed via 
slip rings and connected to a three-phase converter 
referred to as RSC. The RSC shares a DC bus with a 
second converter connected in parallel with the grid and 
DFIG stator, referred to as the grid-side converter (GSC). 
The shared DC link enables power to flow between the 
rotor circuit of the DFIG and the grid connection. The 
proposed topology includes an additional converter 
connected in series with the line through transformer, 
known as SGSC. Also, a braking chopper added to DC bus 
is to keep the DC-link voltage at its rated value. 

 The modeling of the SGSC is briefly described in this 
section, in which the components of the positive and 
negative-sequence currents and voltages of the SGSC can 
be expressed in synchronous d-q reference frame as 
follows [16]-[17]:  
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where cdV +

, cqV +

, cdV −

, and cqV −

are the dq-components of 

the voltage across the filter capacitor of the SGSC. fdV +

, 

fqV +

, fdV −

, and fqV −

are the dq-components of the inverter 

output voltage of the SGSC. sdI +

, sqI +

, sdI −

, and sqI −

 are dq 

components of the grid current. fdI +

, fqI +

, fdI −

, and fqI −

 are 
dq-components of the filter inductor current of the SGSC. 
It is noted that the subscripts “+” and “-” denote the 
positive and negative-sequence components, respectively. 

From (1), a state-space modeling of the system written 
in the positive sequence-components is derived as follows:  
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Figure 2. DFIG wind turbine system with SGSC and braking chopper. 

III.  PROPOSED CONTROL  

A. Compensation of voltage sag 

The reference of the compensation voltage across the 

series transformer injected by the SGSC can be 

expressed as: 
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where ,ga presagv , ,gb presagv and ,gc presagv  are the voltages 

across the low-voltage side of the Y/Δ transformer before 

the sag; gav , gbv  and gcv  are the voltages after the sag. 

B. Control of SGSC using sliding mode control  

A multi-input multi-output (MIMO) nonlinear approach is 

proposed for the purpose of eliminating the nonlinearity 

in the modeled system [18]-[21]. A multi-input multiple-

output system can be considered as: 
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                 )(xhy =                                       (6) 

where x is the state vector, u is the control input, y is the 

output, f and g are the smooth vector fields, respectively, 

and h is the smooth scalar function. 

The nonlinear model of the SGSC in (3) is expressed in 

(5) and (6) as:  
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Then, the control law is given as 
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Figure 3. Voltage control block diagram of SGSC

  
    By using a sliding mode control theory, the equivalent 

control input can be derived as the continuous control 

input that  1 2 0s s= =  yields.  

 
 

1 1 11 12

2 2 21 22

eq f

eq f

u L C v H H

u L C v H H

 + + 
=   

+ +   

         (10) 

 

Where 

2 2

11

2 2

21

1 1
1

1 1
1

f e fe
fd cq

f

f e fe
fq cd

f

C C
H I V

C C C L C

C C
H I V

C C C L C





+ +

+ +

  
= + + +    

   

  
= − + + +    

   

 

12 2

22 2

1

1

e f

sq sd

e f

sd sq

C
H I I

C C

C
H I I

C C





+ +

+ +

= −

= +

   

To drive the state variables to the sliding surface 

1 2 0s s= = , in the case of 1 20, 0s s  , the control 

laws are defined as  
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where 1>0, 2>0. 

The reaching law can be derived by substituting (11) 
into (9), which gives. 

( ) ( )1 1 1 2 2 2;s sign s s sign s = − = −       (12)    

In order to determine the stability and robustness, 

Lyapunov’s functions which are presented in [21]. 

The block diagram of the proposed control is shown in 

Figure 3, whereas the components of the positive-

sequence voltages in the dq-axis are separately controlled 

by using the SMC. Meanwhile, the components of the 

negative-sequence voltages in the dq-axis are regulated, 

depending on the PI controller [17]. Then, the outputs of 

the SMC control ( *

12 fdqu V += ) and  the PI control ( *

fdqV − ) are 

transformed to the voltage references in three-phase abc 

reference frame, applied for the space vector pulse-width 

modulation (SVPWM) [22].  

IV.  SIMULATION RESULTS 

To verify the feasibility of the proposed method, 

PSCAD simulation has been carried out for a 2 MW-

DFIG wind turbine system. The parameters of the wind 

turbine, generator and series grid-side converter are listed 

in Table 1, 2 and 3, respectively.   

Table 1. Parameters of wind turbine 

Parameter Value 

Rated power 2 MW 

Blade radius 45 m 

Air density 1.225 kg/m3 

Max. power conv. 

coefficient 

0.4 

Cut-in speed 3 m/s 

Cut-out speed 25 m/s 

Rated wind speed 16.5 m/s  

Blade inertia 6.3x106 kg.m2 
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Table 2. Parameters of 2 MW- DFIG 

Parameter Value 

Rated power 2 MW 

Grid voltage 690 V 

Stator voltage/frequency 690 V/60 Hz 

Stator resistance 0.00488 pu 

Rotor resistance 0.00549 pu 

Stator leakage inductance 0.0924 pu 

Rotor leakage inductance 0.0995 pu 

Generator inertia 200 kg.m2 

 Table 3. Parameters of SGSC 

 Parameter Value 

Capacity 0.8 MW 

DC-link capacitor 8200 F 

Inverter output filter L=0.1 mH, C =1000 F 

Switching frequency 2.5 kHz 

Series transformer  0.8 MW, 690 V/ 690 V 

 

Figure 4 shows the system performance for 

unbalanced grid voltage fault without using SGSC 

system, where the wind speed is assumed to be constant 

(16.5 m/s) for easy investigation. The fault condition is 

50% sag in phases A and B for 0.1 s which is between 1.6 

s and 1.7 s. When there is the grid unbalanced voltage sag 

( gabcV
) as shown in Figure 4(a), the negative-sequence 

component of the grid voltage exist. As can be seen from 

Figure 4 (b), the DC-link voltage ( dcV ) of the DFIG 

converter without using SGSC reaches 2.9 pu, which can 

destroy the DC capacitor and the switches of the 

converter. Also, the stator and rotor currents ( abcsi , abcri ) 

are increased, as illustrated in Figure 4(c) to 4(d), 

respectively. In this case, the generator speed ( r ), as 

illustrated in Figure 4(e) accelerates to obtain the optimal 

value for tracking the maximum power point. Similarly, 

the generator torque ( gT
)in Figure 4(f) is also oscillated 

under the grid voltage fault. 

Figure 4. Performance of DFIG wind turbine system for unbalanced voltage sag (in pu). (a) Grid voltages. (b) DC-
link voltage. (c) Stator power. (d) Rotor power. (e) Stator currents. (f) Rotor currents. (g). Generator speed. (h) 
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Figure 5. Performance of series volatge-source converter system for unbalanced voltage sag (in pu). (a) Grid 
voltages. (b) SGSC output voltages. (c) Stator voltages. (d) q-axis positive voltages of SVSC. (e) d-axis positive voltages 

of SGSC. (f) q-axis negative voltages of SGSC. (g) d-axis negative voltages of SGSC. (h) Compensated active and 
reactive powers. 

Figure 5 shows the performance of SGSC system 

under balanced grid voltage fault. Due to unbalanced 

voltage sag, as shown in Figure 5 (a), the compensation 

voltages ( cabcV ) in Figure 5 (b) are injected by the SGSC 

system. With the compensation, the stator voltages ( abcsV
) 

in Figure 5 (c) compensated, are kept at the rated value. 

The dq-axis voltages ( cdqV
) of the SGSC are shown from 

Figure 5 (d) and (e), respectively. Aslo, the active and 

reactive powers ( cP , cQ
) injected by the SGSC are shown 

in Figure 5 (f). Without SGSC for voltage compensation, 

the stator and rotor currents, and generator torque give 

high oscillations, as seen in Figure 4(c), 4(d) and 4(f), 

respectively. However, they are kept almost constant with 

compensation.  

 

Figure 6 shows the performance of DFIG wind 

turbine system under unbalanced voltage fault. It is clear 

from Figure 6 that all quantities of the DFIG with the 

proposed SGSC such as DC-link voltage, stator active and 

reactive powers, stator and rotor currents, generator speed 

and torque during grid faults have the same waveforms as 

those without grid faults. On the other hand, the DFIG 

still operates normally as if the grid fault occurs. Thus, the 

proposed method obtains the better operation for the 

DFIG wind turbine system during asymmetrical grid fault. 

Also, the proposed method can satisfy with almost all 

national grid codes. On the other hands, the wind power 

systems still maintain connected to the grid under the grid 

fault conditions, as shown in Figure 1. 
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Figure 6. Performance of DFIG wind turbine system for unbalanced voltage sag (in pu). (a) Grid voltages. (b) DC-
link voltage. (c) Stator active power. (d) Stator reactive power. (e) Stator current. (f) Rotor current. (g) Generator speed. 

(h) Generator torque.  

V.  CONCLUSION 

In this paper, the application of a SGSC connected 

to a wind-turbine-driven DFIG to allow uninterruptible 

fault ride through of grid voltage faults is introduced. 

With the proposed method, the DC-side of the SGSC is 

connected at the DC bus of the back-to-back converters 

without using diode rectifier, and thus reduce the capital 

cost. For SGSC control, positive- and negative-sequence 

component voltage controllers which are respectively 

based on SMC and PI control are performed in the dq 

synchronous reference frame. Also, to prevent the DC  

capacitor from its overvoltage, a braking chopper has 

been employed. The simulation results for 2 MW-DFIG 

wind turbine system with the voltage compensation at the 

grid faults are presented, give as good performance as 

those without grid faults. 
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KHẢ NĂNG LƯỚT QUA ĐIỆN ÁP THẤP CỦA HỆ 

THỐNG TUA BIN GIÓ DFIG DỰA VÀO BỘ BIẾN 

ĐỔI PHÍA LƯỚI NỐI TIẾP 

Tóm tắt: Bài báo đề xuất khả năng lướt qua điện áp 
thấp (LVRT) của hệ thống tua bin gió dùng DFIG. Với 
phương pháp được đề xuất, phía DC của bộ chuyển đổi 
phía lưới nối tiếp (SGSC) được kết nối với thanh cái DC 
của các bộ chuyển đổi back-to-back và phía AC của nó 
được kết nối nối tiếp với đường dây qua máy biến áp và 
bộ SGSC có khả năng bù đáp ứng điện áp của hệ thống 
trong thời gian xảy ra sự cố lưới điện và giảm chi phí vốn 
đầu tư. Thuật toán điều khiển cho SGSC bao gồm cả bộ 
điều khiển điện áp thành phần thứ tự thuận dựa trên điều 
khiển chế độ trượt (SMC) và bộ điều khiển điện áp thành 
phần thứ tự nghịch dựa trên điều khiển tích phân tỷ lệ (PI) 
được thực hiện trong hệ quy chiếu đồng bộ dq. Ngoài ra, 
để bảo vệ tụ điện DC khỏi quá áp của nó, braking chopper 
đã được sử dụng. Kết quả mô phỏng cho hệ thống tua bin 
gió 2 MW-DFIG có bù điện áp khi có sự cố lưới điện 
được trình bày, cho kết quả vận hành tốt, như trong 
trường hợp hệ thống không có sự cố lưới. 

Từ khóa – máy phát không đồng bộ nguồn kép, lướt 

qua điện áp thấp, bộ chuyển đổi phía lưới nối tiếp, sụt áp, 

tua bin gió. 
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