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 Abstract— Air quality prediction is a challenging but 

practical research topic in machine learning and data 

analytics. Since air quality directly affects human health 

and life in the long term, predicting its index values has 

always attracted much attention from researchers and 

government agencies. Today, many ground-based stations 

are established to provide air quality index values in 

monitored areas. Meanwhile, Unmanned Aerial Vehicles 

(UAVs) are being used more and more for surveillance 

applications, and become a good candidate application for 

air quality monitoring. However, monitoring and 

predicting air quality using UAVs is still a new domain and 

poses many challenges for the research community. To 

solve the problem of predicting air quality based on sensor 

values measured using UAV, in this paper, we propose a 

solution that based on a model combing an unidirectional 

convolutional neural network and a bi-directional long 

short term memory network (1DCNN-BiLSTM). 

Experimental results with highly efficient and practical 

performance have shown that our proposed method can be 

deployed in real monitoring applications. The proposed 

system can also be a useful source of data in complement 

with ground-based stations. 

 

Keywords— Convolutional neural network, air quality 

monitoring, UAV, Bi-directional long short term memory.  

I. INTRODUCTION 

Nowadays, environmental issues, especially air quality 

are more concerned by most people than ever. Air pollution 

is a major challenge for cities and industrial zones, with 

serious impacts on human health. According to the World 

Health Organization, 7 million people are exposed to 

health risks from air pollution [1]. It is the leading risk 

factor for most health problems such as asthma, skin 

infections, heart, throat, lung cancer, and diseases of the 

respiratory system. Besides, it is also a serious threat to our 

planet. Pollution emitted from various sources such as 

vehicles and industrial zones is the primary cause of the 

greenhouse effect, and CO2 emissions are one of the most 

important causes of the greenhouse effect [2]. Climate 

 
 

change has been widely discussed in global forums and has 

remained a burning issue for the world for the past two 

decades, which results in the increasing of smog and ozone 

layer damage. Air quality index estimation is an important 

way to monitor and control air pollution. Some air 

pollutants, known as standard air pollutants, can cause 

damage to health, the environment, and property. The most 

significant pollutants are Carbon Monoxide (CO), Lead 

(Pb), Nitrogen Dioxide (NO2), Ozone (O3), Particulate 

matter (PM), and Sulfur Dioxide (SO2). 

Meteorological conditions, including regional and general 

meteorology, play an important role in determining air 

pollutant concentrations [3–8]. For example, low ambient 

temperature accompanied by solar radiation slows down 

the photochemical reaction and leads to fewer secondary 

air pollutants, such as O3 [9]. Increased wind speed can 

increase or decrease the concentration of pollutants in the 

air. For example, when wind speed are low, traffic-related 

pollutants have the highest concentrations [10, 11]. 

However, strong wind speed can form dust storm by 

blowing up terrestrial particles [12]. High concentration of 

some air pollutants (such as PM, CO, and SO2), is often 

associated with high humidity. But for other air pollutants 

(such as NO2 and O3), high humidity leads to low 

concentration [11]. In addition, high humidity can be an 

indicator of precipitation phenomena, leading to strong wet 

deposition which reduces air pollutant concentrations [13]. 

Clouds can scatter and absorb solar radiation, which has 

implications for the formation of some air pollutants (eg, 

O3) [9, 14]. Therefore, meteorological variables are 

important parameters to predict the concentration of 

pollutants in the air. Fortunately, these meteorological 

parameters can be measured easily and efficiently with an 

UAV carrying the corresponding sensors. 

The typical idea for monitoring air quality is to use sensors 

fixed at several important locations, to measure the 

concentration of air components. The air quality 

information is then sent to a data center for storage and 

analysis. However, this approach is quite expensive and 

difficult to implement in some locations. On the other 

hand, since the number of sensors is limited, the air quality 

monitoring is only done at fixed locations, we cannot have 
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detailed air quality information over a large area, and thus 

cannot get an overview of the air quality for that area. 

On the other hand, predicting air quality is also an 

important requirement for environmental monitoring 

systems. There are many methods to predict air quality, of 

which using Machine learning algorithms are a popular 

choice. For example, in a recent study [15], Zhou et al. 

presents a method using artificial intelligence based on the 

Deep Multi-Output LSTM (DM-LSTM) neural network 

model to predict the air quality in the Taipei city, Taiwan. 

The study is promising, but the data used in the study was 

generated by five fixed air quality monitoring stations in 

the city. Therefore, these data sets do not reflect pollution 

concentrations at a detailed level at each area. Similarly, 

other data-based methods have been used to predict air 

quality such as DEA (data envelopment analysis) in [16], 

however, the information being used comes from fixed 

data sources, not portable sensor units that can be carried 

on a daily basis. 

To solve the above-mentioned problems, in this paper, we 

proposing a method which focus on using the 1DCNN - 

BiLSTM model for air quality prediction problem. Our 

study used sensor data collected using UAVs to train and 

validate the propose model. Our contribution consists of 

three main parts: 

- Proposed CNN model, 1DCNN-BiLSTM extracts 

features from data collected by sensors on unmanned 

aerial vehicles. 

- Building of a database (dataset) on air quality in 

separate areas. Then we evaluate the proposed method 

on the collected dataset and analyze the results. 

- Development of a prototype to prove the feasibility 

and efficiency the proposed method as shown in 

Figure 1.  

II. RELATED WORKS 

In previous studies related to monitoring and predicting air 

quality, there are two main categories: deterministic and 

statistical models. Deterministic models use meteorology, 

physics, and chemistry to simulate the transfer, diffusion, 

or elimination of pollutants. The deterministic models can 

be mentioned as CMAQ (Community Multiscale Air 

Quality) [17] and WRF-Chem (Weather Research and 

Forecasting model coupled with Chemistry) [18]. These 

theoretical analysis-based models are widely used in the 

environmental and atmospheric research community [19, 

20]. However, due to factors such as data errors, complex 

geographical conditions, and weak theoretical foundations, 

these methods often have limited accuracy [21, 22]. On the 

other hand, the above methods do not solve the real-time 

prediction problem because they require specific 

calculations with all the non-linear points in the complex 

atmosphere, resulting in long computation times. 

Meanwhile, statistical modeling relies on data to compute 

and predict the results, giving more accuracy but requiring 

careful annotation process. Previously, traditional machine 

learning methods were widely applied to air quality data 

processing such as SVM, decision tree, or random forest. 

These machine learning methods require a feature 

extraction step for the data before it can be input for the 

models. Recently, deep learning models are becoming 

more and more popular in many research fields, including 

air quality analysis and prediction. Deep learning models 

do not require separate feature extraction step, but this 

process will rather be trained inside the deep learning 

model. 

 

Figure 1: System overview 

 

A. Machine learning. 

To overcome the problems of deterministic models, many 

studies have applied machine learning algorithms to 

predict air quality. Machine learning models do not require 

complex physical and chemical processing like 

deterministic models but use previously collected air data 

to predict air quality in the near future. In addition, the 

machine learning approach helps to solve the non-linear 

problem and improves the performance and accuracy of the 

model. Linear regression is a fundamental model in 

machine learning. Some researchers have applied this 

model to the air quality prediction problem. For example, 

Rajput et al used a multiple linear regression model to 

predict air quality in India [23]. However, air pollutants 

have a nonlinear relationship with their influencing factors. 

Singh et al. [24] compared linear and nonlinear methods 

and found that nonlinear methods can capture complex 

nonlinearities in air quality data. Therefore, nonlinear 
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models, such as artificial neural networks (ANNs) [25] are 

more suitable than linear models. Azid et al. [26] combined 

Principal Component Analysis (PCA) and ANN to predict 

air quality in Malaysia. De Vito et al. [27] improved ANN 

with a dynamic approach. Kang [28] used Lanzhou data 

and genetically simulated annealing ANN to predict air 

quality. Paoli et al [29] used ANN to predict O3 in Corsica. 

Mahajan et al [30] used a clustering method based on the 

geographical distance to improve the performance of 

ANNs in 4 cities in Taiwan. Another nonlinear method is 

the Support Vector Machine (SVM) [31] which is also 

favored by researchers because it has better generalization 

ability than ANN. Sánchez et al. [32] found that SVM often 

outperformed ANN by comparing SVM with different 

kernels and ANNs. Nieto et al [33] used a PSO-SVM-

based method to predict air quality over northern Spain. Gu 

et al. [34] extracted the sequential information of the 

prediction by applying the regression method to the SVM. 

B. Deep learning. 

Despite the improved performance compared to 

deterministic models, traditional machine learning models 

often have to use complex methods to preprocess data and 

extract features manually. Data in air quality monitoring 

issue are often characterized by spatial and temporal 

correlations. Capturing these dependencies is a critical task 

for building an accurate model. Deep learning is a 

promising method to solve this problem, due to its ability 

in automatically extracting of features and complex 

relationships of inputs. For example, in [35] Li et al. uses a 

stacked autoencoder (SAE) to extract information from 12 

stations and then feed the extracted information into a 

linear regression (LR) to predict air quality at 12 stations 

simultaneously.  

However, air quality data is sequential, so models that 

handle sequential data better such as Recurrent neural 

network (RNN) give out stronger performance than SAE, 

ANN, and SVM in predicting air quality. Ong et al [36] 

also used SAE but replaced LR with RNN to provide a 12-

hour prediction time. However, RNNs have two classic 

drawbacks: explosive gradients and vanishing gradients. 

Therefore, several studies have used Long Short-Term 

Memory (LSTM) to predict air quality. For example, use 

LSTM to predict air quality for the next 12 hours and 24 

hours, respectively [37, 38]. Zhao et al. [39] used the 

information of neighboring stations to build a LTSM-based 

model. Wang et al. [40] also used LSTM, but they applied 

Granger causality to select stations with high relevance. 

Zhou et al [41] established an LSTM-based model to 

predict the air quality of several stations. Some studies 

have found that RNN can achieve better results than ANN 

and SVM [42, 43]. The Gated Recurrent Unit (GRU) is a 

simplified version of the LSTM, and some researchers 

have used it to predict air quality. Athira et al [44] 

compared RNN, LSTM, and GRU to predict air quality and 

their experiments showed that GRU had the best 

performance. Wang et al. [45] added a residual connection 

to GRU and LSTM, they found that GRU has better 

performance than LSTM. Instead of preprocessing the data 

with RNNs, which use a convolution function before 

including them in predictions, their experiments show that 

GRU has better results than LSTM, ANN, SVM, random 

forest, and MLR. Some studies [47, 48, 49] use a 

convolutional neural network (CNN) [50] to preprocess 

raw data and then feed them into LSTM. Soh et al. [51] 

used CNN to extract topographic information, for example, 

a mountain between stations and used LSTM and ANN to 

extract information from the target station and highly 

related stations, selected by the clustering method. In the 

end, they aggregated all the information to make a final 

prediction. Pan et al [52] established a model that includes 

spatial, temporal, and deduction modules. The intermediate 

module extracts the parameters of the space and time 

modules. Modules can be CNN, LSTM, or ANN models, 

used to make the final prediction. 

III. PROPOSED METHOD 

The proposed method uses CNN + Bi-LSTM model to 

predict the air quality value as illustrated in Figure 2. Given 

the input data, the proposed model uses the values at the 

previous t time steps to predict the time step t + 1. In each 

time step, we decide to use the data of N nearest points (in 

the map) as a characteristic of this time step. The optimal 

N and t are selected based on the experimental results. 

The original raw data will be of the form D*D*T (where 

D*D is the number of points to be sampled, in this case, D 

= 40). This data will be processed before being fed into the 

training model. After preprocessing, the input data will 

have the form D*D*K*K*T (K is the size of the square 

with the center corresponding to the position of the point 

to be predicted). The output of the model will take the form 

of a feature array that is the predicted result for the time 

t+1 that we set earlier. The main steps are as follows: 

- Input data: enter the necessary data for training the CNN-

LSTM model. 

- Transform the data using the nearest k points as the 

feature vector to be trained. 

- Initialize the network: initialize the weights and offsets of 

each layer of the CNN-LSTM model. 

- Computation at CNN layer: consecutive input data is 

passed through the convolution layer and batch 

normalization layer in the CNN layer, feature extraction of 

input data is performed and the output value is obtained. 
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- Computation at the BiLSTM layer: the output data of the 

CNN layer is passed through the BiLSTM layer and the 

output value is obtained. 

- Computation at the output layer: the output value of the 

BiLSTM layer is passed into the dense (fully connected) 

layer to get the output value. 

- Computation error: we compare the output value 

calculated by the output layer with the actual value of this 

data group and obtain the corresponding error. (Using 

MPAE). 

- Save model: save the trained model. 

 

Figure 2: CNN – BiLSTM architecture 

A. CNN. 

CNN is a deep learning network model including 

convolutional layers that is widely used in image 

processing. It can be effectively applied to time series data 

prediction. CNN mainly consists of two parts: 

convolutional layer and pooling layer. CNN models are 

typically designed to operate on two-dimensional data such 

as images and videos. For this reason, the CNN model is 

often referred to as the two-dimensional (2D-CNN) or 

Conv2D CNN model. Recently, to solve the problems 

related to one-dimensional time series data, the 1-D CNN 

model or Conv1D has been developed. In our method, we 

used a 1-dimensional convolution layer (which takes input 

as 1-dimensional data) to extract the features of the data 

and use it as the input of the LSTM. 

B. Bi-LSTM. 

An LSTM model consists of 1 cell, 1 input gate, 1 forget 

gate, and 1 gate as demonstrated in Figure 3. The cell stores 

a value and the gates control the flow of information in and 

out of that cell. The specific derivative formula of LSTM 

is illustrated in equations (1) - (7). In our proposed method, 

the LSTM layer is superimposed after the CNN to learn the 

relationship between the number of days and the air quality 

of the surrounding points. 

The output of LSTM is cell state ct and hidden state ht. Its 

input is the cell state of the previous timestep ct-1, the 

hidden state of the previous timestep ht-1 and the input of 

the itth state (xt). 

sigmoid (𝑥) = 
1

1+ 𝑒−𝑥                            (1) 

ft = sigmoid (Uf * xt + Wf * ht – 1 + bf)               (2) 

it = sigmoid (Ui * xi + Wi * ht – 1 + bi)               (3) 

ot = sigmoid (Uo * xt + Wo * ht – 1 + bo)              (4) 

ct = ft * ct – 1 + it*tanh(Uc*xt + Wc*ht – 1 + bc)          (5) 

ht = ot * tanh(ct)                               (6) 

Where Uf, Uc, Ui, Uo are the input weight, Wf, Wc, Wi, Wo 

are recurrent parameters and bf, bc, bi, bo are the bias. 

In BiLSTM, input data is processed by both forward and 

backward layers to utilize both forward and backward data 

of the current data. BiLSTM model gives better results than 

traditional LSTM, especially for data with closely related 

time and value. 

 

Figure 3: Architecture of LSTM cell. 

IV. EXPERIMENTAL RESULTS 

In this section, we focus on evaluating the CNN - BiLSTM 

method on the data set that has been collected by drones. 

We present the data collection method in section A. Next, 

the results are presented and evaluated in sections B and C 

respectively. 

A. Data collection 

Figure 4: UAV with sensor board to collect data 

 

We utilized UAV in Figure 4 to perform air quality data 

acquisition. The benefits of using UAV for capturing air 

quality data include: low cost; versatility (applicable to 

many atmospheric research applications); flexible, time 

saving and easy to deploy. The UAV were built with the 

following basic functions: Receiving sensor signals, 

cameras; controlling UAV motors; storing collected data; 

transferring data to ground station. Data collection unit will 

consist of three main components: 

- Measurement unit (including sensor and thermal 

camera): A PCB that integrates different types of 

sensors and thermal cameras on a system of hardware 

circuits that allows data acquisition of various types of 

data: sensor data and images from thermal cameras. 

- Main processing unit: also known as Main Embedded 

Computer (MEC). The main function of the MEC is to 

receive information from the sensor, preprocess the 

sensor data and then store it in the memory of the 

UAV. 

- Interface unit: Contains communication modules from 

the drone to the storage modules. The module is designed 

and manufactured according to communication protocol to 
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easily connect from the main MEC to the storage hardware. 

The interface unit has two main functions: first, receive the 

measure signal from the air quality sensors and thermal 

camera, send these signals to MEC for further signal 

processing. And second, store the acquired data in the 

UAV memory. 

We have selected the area of Quang Minh industrial zone, 

in Hanoi for data collection. Data was collected through a 

UAV device in the area of the industrial zone with an area 

of 1600x1000m divided into a grid of 40x25m cells. In this 

area, the flight path for the UAV is described as follows: 

The UAV will fly around the area once for every hour, 

collecting data at predefined points on that grid. For each 

point on the grid, the data will include the following 

attributes: temperature, humidity, fine dust PM 2.5, SO2, 

NO2, CO2, CO, NH3, O3, longitude, latitude of the data 

point and time of its measurement (year-month-day, hour). 

The data collection was taken place for 1 month so that we 

can make sure changes in weather are included in this 

period. A detailed description of each indicator is given in 

the Table 1 below: 

 

Table 1: Data description 

Data Note 

AQI air quality index. 

PM 2.5 particulate matter pm2.5(µg/m3). 

SO2 gas concentration (g/m3). 

NO2 gas concentration (g/m3). 

CO gas concentration (g/m3). 

CO2 gas concentration (g/m3). 

NH3 gas concentration (g/m3). 

O3 gas concentration (g/m3). 

Longitude at measurement point 

Latitude at measurement point 

 

B. Evaluation index. 

We use the mean absolute percentage error (MAPE) as the 

evaluation criterion for this problem. MAPE is a measure 

of the accuracy of a statistical prediction method. The 

formula of MAPE is as follows: 

M = 
100

𝑛
 ∑ |

𝐴𝑡− 𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1        (7) 

Where Ft is the prediction value and At is the real value. 

The smaller the value of MAPE, the closer the forecast 

results are to reality. 

C. Results. 

Performance evaluation. 

With this experiment, we compared the proposed CNN-

BiLSTM method with previous methods including: linear 

regression, BiLSTM on the same data set. We compare 

these methods with different parameters such as number of 

sampling days and sampling range K (applicable to CNN-

BiLSTM). 

 

Table 2: Results with data from previous 3 days 

Meth

od 

CNN-

BiLST

CNN-

BiLST

CNN-

BiLST

Linear 

Regressi

on 

LST

M 

M 

(K=3) 

M 

(K=5) 

M 

(K=7) 

SO2 4% 18% 17% 5% 5% 

NO2 8% 16% 18% 28% 8% 

CO 15% 16% 17% 7% 8% 

CO2 11% 14% 14% 15% 12% 

NH3 5% 10% 12% 25% 8% 

O3 6% 10% 12% 17% 9% 

PM2.

5 

8% 14% 16% 21% 10% 

 

Table 3: Results with data from previous 5 days 

Meth

od 

CNN-

BiLST

M 

(K=3) 

CNN-

BiLST

M 

(K=5) 

CNN-

BiLST

M 

(K=7) 

Linear 

Regressi

on 

LST

M 

SO2 3% 12% 14% 5% 5% 

NO2 6% 10% 12% 17% 8% 

CO 12% 15% 16% 7% 9% 

CO2 9% 12% 14% 15% 10% 

NH3 4% 8% 10% 20% 10% 

O3 5% 9% 10% 15% 8% 

PM2.

5 

7% 10% 12% 18% 12% 

 

Table 4: Results with data from previous 7 days 

Meth

od 

CNN-

BiLST

M 

(K=3) 

CNN-

BiLST

M 

(K=5) 

CNN-

BiLST

M 

(K=7) 

Linear 

Regressi

on 

LST

M 

SO2 5% 18% 18% 6% 6% 

NO2 9% 16% 19% 25% 9% 

CO 14% 17% 15% 9% 10% 

CO2 9% 12% 10% 11% 10% 

NH3 6% 12% 14% 20% 10% 

O3 6% 12% 13% 18% 10% 

PM2.

5 

8% 12% 14% 20% 12% 

 

Table 5: Results with data from previous 30 days 

Meth

od 

CNN-

BiLST

M 

(K=3) 

CNN-

BiLST

M 

(K=5) 

CNN-

BiLST

M 

(K=7) 

Linear 

Regressi

on 

LST

M 

SO2 4% 17% 15% 6% 6% 

NO2 7% 15% 16% 25% 9% 

CO 14% 16% 13% 8% 11% 

CO2 9% 10% 10% 10% 10% 

NH3 6% 11% 13% 15% 8% 

O3 6% 10% 11% 12% 10% 

PM2.

5 

7% 9% 15% 17% 12% 

 

Table 6: Results with data from previous 45 days 

Meth

od 

CNN-

BiLST

M 

(K=3) 

CNN-

BiLST

M 

(K=5) 

CNN-

BiLST

M 

(K=7) 

Linear 

Regressi

on 

LST

M 

SO2 4% 16% 14% 5% 6% 
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NO2 7% 14% 15% 22% 9% 

CO 14% 15% 13% 8% 10% 

CO2 8% 11% 10% 9% 9% 

NH3 6% 10% 12% 14% 8% 

O3 6% 11% 10% 11% 9% 

PM2.

5 

7% 9% 14% 18% 11% 

 

In overall, the results in Table 2, Table 3, Table 4, Table 5, 

and Table 6 show that the accuracy of CNN-BiLSTM are 

superior compared to previous methods (LSTM, Linear 

Regression). The proposed method can result in the best 

MAPE values for SO2, NO2, CO, CO2, NH3, O3, and 

PM2.5 are 3%, 6%, 12%, 9%, 4%, 5%, and 7% 

respectively. In the case of data taken from previous 7 days 

in Table 4. Only linear regression method can give better 

result than the proposed Bi-LSTM method in case of CO 

gas prediction. With other methods, the accuracy decreases 

when the number of sampling days increase. However, 

with the CNN-BiLSTM method, the results tend to be good 

when increasing the number of sampling days and 

decreasing the size of the neighborhood points used to 

sample at each point or most type of gases (SO2, CO2, CO, 

NH3, O3) and PM2.5. When compared with the most 

common method for time series problems, the LSTM, we 

find that for a small number of days, the LSTM achieves 

comparable or even better accuracy for some gases. 

However, when the number of sampling days increases, the 

strengths of CNN-BiLSTM are clearly revealed and the 

error is minimal. In addition, when the number of sampling 

days is 5 days, the result of the proposed method is the best. 

A neighborhood size of 3 also gives good results compared 

to a neighborhood size of 5 and 7. In addition, the data is 

shown in Table 5 and Table 6 prove that the longer data is 

used the better performance the model can achieve. This 

can be explained by the fact that, the air pollution index is 

heavily influenced by the season of the year. If the data is 

collected in the duration of one year, the experimental 

result can be much improved.  

 

Inference time 

Inference time is calculated from when the model starts to 

process input data until the model gives the predictive 

results. A model is considered good if and only if it has 

good inference time and accuracy. We often need to make 

a trade-off between the inference time and the accuracy of 

the model because the model needs more parameters to 

make more accurate predictions. In addition, a model with 

fast enough inference time can be practical for daily usage. 

In this comparison, M is used as a changing parameter, 

which is the number of days in the past used to predict 

future sensor values. The inference time of different 

methods is given in Table 5 as follows: 

 

Table 7: Inference time for 1 data point 

Method Time 

CNN - 

BiLSTM 

M = 3 0,057s 

M = 5 0,062s 

M = 7 0,077s 

Linear Regression 0,00035s 

LSTM 0,067s 

 

It is worth noting that the above inference time is calculated 

when the model predicts one data point. When the number 

of data points to predict increases, this inference time also 

increases. However, the inference time does not increase 

linearly with the number of data points to be predicted. 

Below is the inference time to predict the 16000 data points 

corresponding to the 10 areas which have size of 40 x 40 

each that we used during model training. 

 

Table 8: Inference time for 16000 data points 

Method Time 

CNN - 

BiLSTM 

M = 3 16,6s 

M = 5 30,1s 

M = 7 74,7s 

Linear Regression 0,01s 

LSTM 24,2s 

 

It can be seen from Table 8 that the CNN-BiLSTM 

model has the longest inference time, which is quite 

understandable because it needs more parameters to predict 

and its accuracy is also the highest. However, the above 

inference time may still be suitable for use in practical 

applications. When compared with the LSTM model, the 

CNN–BiLSTM model with M = 1 and M = 3 proved to be 

superior when having the same or smaller inference time 

while providing higher accuracy. 

V. CONCLUSION 

In this paper, we have collected a data set of air quality 

measurement in Quang Minh industrial zone, Hanoi to 

experiment with our proposed model, as well as other 

common used models. The experimental results show that 

the proposed model works well with the dataset, proving 

its efficiency and feasibility when deployed in real-world 

application. In addition, in this work, we have also built a 

complete system which including an UAV, a ground 

station control, a data processing server, and a digital map. 

Although the experiments conclude with promising results, 

this study still has some limitations that can be overcome 

and improved in future. We will conduct a data collection 

on a wider and more diverse terrain, in order to evaluate 

the air quality more objectively and multidimensionally, 

then analyzing deeper the errors of the measurement. Our 

team also aims to build a multi-task machine learning 

model that can both predict future air quality and be able 

to eliminate and correct errors in measurements. 

Correction of measurement errors is necessary when 

implementing the application in real field. This is because 

the air quality data measured by sensors always have 

outliers, missing data. In addition, we also aim to solve the 

problem of optimizing the flight trajectory of the UAV to 

improve mesurment efficiency and save energy. 
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MÔ HÌNH HỌC SÂU ĐA TẦNG CHO DỰ ĐOÁN 

CHỈ SỐ CHẤT LƯỢNG KHÔNG KHÍ. 
 

Tóm tắt:  Dự đoán chất lượng không khí là một chủ đề 

nghiên cứu đầy thách thức nhưng thiết thực trong lĩnh vực 

học máy và phân tích dữ liệu. Vì chất lượng không khí ảnh 

hưởng trực tiếp đến sức khỏe và cuộc sống của con người 

về lâu dài nên việc dự đoán các giá trị chỉ số của nó luôn 

thu hút nhiều sự quan tâm của các nhà nghiên cứu và các 

cơ quan chính phủ. Hiện nay trên thực tế đã có nhiều trạm 

giám sát mặt đất được thiết lập để cung cấp các giá trị chỉ 

số chất lượng không khí trong các khu vực. Đồng thời, các 

phương tiện bay không người lái (UAV) ngày càng được 

sử dụng nhiều hơn cho các ứng dụng giám sát và trở thành 

một ứng cử viên sáng giá cho việc giám sát chất lượng 

không khí. Mặc dù vậy, giám sát và dự đoán chất lượng 

không khí bằng UAV vẫn là một lĩnh vực mới và đặt ra 

nhiều thách thức cho cộng đồng nghiên cứu. Để giải quyết 

vấn đề dự đoán chất lượng không khí dựa trên các giá trị 

cảm biến được đo bằng UAV, trong bài báo này, chúng tôi 

đề xuất một giải pháp dựa trên mô hình kết hợp mạng nơ 

ron tích chập một chiều và mạng bộ nhớ ngắn hạn và dài 

hạn hai hướng (1DCNN-BiLSTM) . Kết quả thực nghiệm 

với hiệu quả cao và mang tính thực tiễn cao đã cho thấy 

phương pháp đề xuất của chúng tôi có thể được triển khai 

trong các ứng dụng giám sát thực tế. Hệ thống được đề xuất 

cũng có thể là một nguồn dữ liệu hữu ích bổ sung cho các 

trạm trên mặt đất. 

 

Từ khóa: Mạng nơ ron tích chập, CNN, giám sát chất 

lượng không khí, UAV, Mạng trí nhớ dài hạn và ngắn hạn 

hai chiều, LSTM. 
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