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Abstract: Mobile Edge Computing (MEC) is crucial to 
the aim of integrating the Internet of Things with 5G and 
forthcoming core technologies. MEC not only acts as an 
extension of cloud computing for the sake of data 
distribution but also provides local computing, ensures 
privacy, enhances system security, and improves system 
reliability. Particularly, the problem of system offloading 
is vital for data processing, computation, and security 
paradigms. Due to its multi-objective and multi-
constraint characteristics, this problem falls inside the 
NP-Hard domain. Specifically, offloading tasks must 
concurrently achieve two objectives: energy saving and 
latency restriction. Hence, the heuristics approach has 
been a beneficial approach for both research and 
deployment objectives. The study will present a particle 
swarm optimization (PSO) algorithm-based offloading 
scheme to address the identified problems. The numerical 
simulations presented in this paper will indicate that our 
proposal is more efficient than that of the previous 
proposal.  

Keywords: Mobile Edge Computing, Offloading 
problems, Heuristics Algorithms, Particle Swarm 
Optimization. 

I. INTRODUCTION

5G and beyond networks are being designed to
support the future digital society with main service 
categories as enhanced mobile broadband (eMBB), 
massive machine-type communications (mMTC), and 
ultra-reliable low latency communications (URLLC) to 
meet the diverse commercial and industrial demands [1] 
[2]. In these scenarios, the Internet of Things (IoT) plays a 
vital role in enabling emerging applications by connecting 
the physical environment to the cyberspace of 
communication systems [3]. ToT is taking center stage as 
connected devices are expected to form a significant 
portion of this 5G network paradigm. Besides IoT-enabled 
applications that will bring convenience to human life, it 
is a highly daunting task for 5G to support these 
applications, such as data rate, latency, coverage, 
localization, and so on. The emergence of cloud 
computing and its extension to the edge paradigm with the 
proliferation of devices is expected to lead to further 

innovation in IoT [4]. Hence, MEC Technology is a major 
driving force behind IoT integration into 5G networks to 
overcome the above challenges [5]. 

In a typical MEC architecture, MEC servers are 
located close to mobile users to make intelligent decisions 
aware of local execution or cloud-based processes. Users' 
tasks consist of computing demands, processing data, and 
security data that should be processed on the device or 
associated MEC servers [6]. Such situations are 
considered in the context of the offloading problem. In 
addition to the advantages MEC offers, optimizing the 
offloading approach has significant challenges due to the 
diversity of requirements, nonlinear environmental 
constraints, and the need for a multi-objective objective in 
practical applications. Hence, this sector has recently 
attracted a lot of research [7] [8]. 

The offloading problem has been recognized as an NP-
Hard problem because it is a multi-objective and multi-
constraint optimization problem containing nonlinear 
conditions from the operating environment. To deal with 
this, main optimization methods have to adapt real-time 
services in mobile edge computing, such as Lyapunov 
optimization, convex optimization, heuristic techniques, 
game theory, machine learning, and others [9] [10]. 
Among these approaches, in some experimental 
conditions, the intense fluctuation of input parameters and 
the requirement of simultaneous optimization of delay 
time and energy have led to many metaheuristics-based 
solutions that have increased in recent years [11]. In this 
paper, we propose a novel scheme for the MEC 
Offloading problem based on the particle swarm 
optimization algorithm to archive both energy and latency 
objects of tasks.   Our contributions are two folds: 

• Formulate the offloading problem in the multi-users,
multi-servers scenario in conjunction with the latency
and energy optimization problem on 5G's common
communications systems.

• Compare and evaluate the proposed offloading
method to a previous genetic algorithm-based
offloading method.

This paper is organized as follows: Section II presents
related work; section III  briefs the background 
assumptions of the proposed scheme; Our proposed 
scheme and validation results are illustrated in IV; Last 
but not least, our conclusions and future works are 
presented in the last section. 
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Because of the problems of stochastic and constantly 
varying environments of IoT, the offloading decision-
making optimization is sophisticated because of diverse 
influence factors and constraints. The offloading 
optimization problem based on metaheuristic algorithms 
has been proposed to overcome the complexity and real-
time required in practical IoT systems. Specifically, the 
main objective of task offloading is to minimize the task 
execution time of applications running at user devices 
(UDs) and lower UEs' energy consumption. This sort of 
problem is the multi-constrained multi-purposes 
optimization. Study on mobile edge computing for ultra-
dense cellular networks, the authors in [10] [12] proposed 
the distributed offloading strategy based on a binary-
coded genetic algorithm designed to get an adaptive 
offloading decision. In a multi-user-to-multi-servers 
(MUMS) edge computing scenario,  the proposed scheme 
can significantly reduce mobile devices' average latency 
and energy consumption in ultra-dense cellular networks. 
Besides focusing only on the ultra-dense configuration, 
the performance comparisons on other metaheuristics 
algorithms were not considered in this study. 

 Focusing on the emerging 5G applications, the authors in 
[13] proposed an offloading strategy based on particle
swarm optimization (PSO) to achieve a relative balance
between energy consumption and time delay. The
simulation results show the network performance of the
all-local executed offload algorithm and the random
executed offload algorithm. The author in [14] proposed
an intelligent particle swarm optimization (PSO) based
offloading strategy with a cache mechanism to optimize
mobile users' energy and delay. The PSO algorithm finds
an appropriate offloading ratio to implement partial
offloading. However, the trade-off ratio of the energy and
delay factors is not figured out, and the algorithm
performance has not been shown in these studies.

III. BACKGROUND AND ASSUMPTIONS

A. Background of the common metaheuristic algorithms

The genetic algorithm (GA) is modeled after the
biological concept of a natural evolution of genomes [15]. 
The flowchart of the genetic algorithm is given in figure 
1. The GA encodes the parameters of the objective

function into a chromosome, which corresponds to a 
single candidate solution. Multiple chromosomes make up 
the genome or population. The algorithm simulates a 
"survival of the fittest" type scenario, where each 
generation of the algorithm attempts to improve upon the 
preceding generation. For each generation of the GA, 
three steps are performed: selection, crossover, and 
mutation. The GA encodes its chromosomes with binary 
strings of 0 or 1, performing well for many discrete 
problems, as in the full offloading problems. 

Figure 2. Flowchart for PSO 

Particle Swarm Optimization (PSO) models its 
behavior after animals' swarming or flocking patterns 
[16]. It is very appealing because the simple conceptual 
framework and the analogy of birds flocking facilitated 
conceptual visualization of the search process. The basic 
PSO algorithm is shown in Figure 2. Instead of 
chromosomes, PSO has particles that make up its 
population, called a swarm. Unlike the GA, there is no 
"survival of the fittest" selection process for determining 
the particles that survive to the next generation, but rather 
just mutation. Each particle is moved from one location to 
another. This mutation is performed directedly, in which 
each particle is moved from its previous location to a new, 
better location. 

The PSO algorithm has several advantages that make 
it an attractive optimization algorithm [17]: 

• PSO is easy to set up and code.

• PSO is controlled by only three parameters
(inertia weight, cognitive ratio, and social ratio).
A slight change in any of these three controlling
parameters produces a difference in performance.

• PSO is adaptable and can be combined with other
optimization algorithms.

B. System model

As shown in Figure 3, the set of user devices is

marked as 1{ ,..., ,..., }i nU u u u= which are distributed in 

the area with random distribution. MEC servers are 

denoted as 1{ ,..., ,..., }j kS s s s= . The zones (Zone 1, Zone 

2,.., Zone Z) are defined according to base station 
embedded MEC server coverage or clustering strategies. 
Current technologies assume that the 5G radio link 
parameters with the most common conditions. 

Figure 1. Flowchart for genetic algorithm 



We consider that each UD generates its tasks with the 

arrival rate i  according to the Poisson process, and one 

task needs to be offloaded at one time in a time slot. 

Denote a set of computation tasks on iUD as 

 1 2, ,..., M   = m M . A required task is triple 

parameters  
max max( ) , ,i i i im l e t   . 

Figure 3. A general MEC model 

In which il is the length of task (bits), the maximum

requires energy 
max

ie and deadline time 
max

it . A task will 

be offloaded in the formulations as 

local mec

i i i  = +  (1) 

local mec

i i il l l= +  (2) 

IV. OFFLOADING PROBLEM FORMULATION

A. Communication model

Assuming that the 5G coverage areas as cluster zones
and UD accesses the MEC server according to the 
Orthogonal Frequency Division Multiple Access 
(OFDMA) mechanism, the transmission rate of the user 

device iu transfer task to the server js is calculated as

follows 

, 2
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Where 
jbW is the bandwidth of the server js located to 

user devices, up is the transmission power of the user iu ,

uh is channel gain, and 0 denotes background noise.

Equation (3) is based on the basic Shanon formula. 

B. Local processing model

If a task ( )i m is processed at the user device iu , the

energy consumption and delay are calculated through the 
CPU cycle as below.  

2
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Where ,

local

i ue is the energy consumption iu for the

local

il bits,
2

uf is the CPU frequency, k is the capacitance

constant, and uC is the CPU cycle required to process the 

task at the microprocessor in a user’s device. The symbols 
and definitions are illustrated in Table 1. 

Table 1. Symbols and Definitions 

Symbol Description 

 The balancing factor of energy and delay 

i  The arrival rate of a user device 

,u sC C The CPU cycle at a user device and a MEC server 

,u sf f The CPU frequency at a user device and a MEC 

server  

il The length of the task i
local

il The bit length processed by a user device  

mec

il The bit length processed by the servers 

,

local

i ue Energy consumption of i at iu

,

mec

i je Energy transmits the consumption of the task i

,

exe

i je Energy consumption executed task i at the server 

js    

up The power transmission of the user device iu

u

it The latency time to process the task i
trans

it The transmission time 

exe

it The executed time at a MEC server 

local

it The executed time at a local user device 

off

ip The offloading proportion of the task i

 A set of user device tasks 

S A set of mobile edge computing servers 

U A set of user devices 

C. Offload processing model

In case of partial offloading problems, to ensure

generality, we denote 
off

ip  the offloading proportion of 

the task i . Otherwise, each MEC server has a probability 

of being the server that UD offloads the task to, as 
prob

sp . 

The probability that a user device selects MEC servers is 
depended on the communication model and clustering 
strategy. 

Considering the capability of the MEC server enough 
to provide computation service to multiple user devices, 
we can get the executed time for offloaded tasks as 

2 2

, . . . ( ). . .mec mec off

i s i s s i i s se l C k f p l C k f= =   (6) 

 
,
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f f
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Where 
2

sf is the CPU frequency at the MEC server, 

and sC is a CPU cycle required to process the task at the 

server. 

The transmission time of a task i is calculated as 

follows, 

,

, ,

mec off
trans i i i
i j u u

i j i j

l p l
t

r r


= = .  (8) 

The energy consumption of transmitting the data iu to

the MEC server js  is shown below. 

, ,

mec prob off trans

i j s i i je p p t=   (9)
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Based on eq (4) and eq (9), the energy consumption of 
the user device, including locally computational energy 
and transmission energy, is performed in the form of: 

, ,

u local mec

i i u i je e e= +      (10) 

The total energy to process a task i for one session is  

, , ,

s local mec exe

i i u i j i se e e e= + +       (11) 

The task of the user's device is executed in parallel 
local and remote at the MEC server, and the execution 
latency of τi is 

, , ,max{ , }u trans exe local

i i j i j i ut t t t= + .  (12) 

The ultimate optimization goal is to determine latency 
and user energy consumption with minimal offloading 
decisions. This problem can be summarized as the 
following optimization objective function. 

1

min ( , ) min . (1 ).
n

off
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i

C p p E T 
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subject to 

c1. 
local mec

i i il l l= +

c2. 0 1off

ip 

c3. max0 u up p 

c4. maxu

i it t

c5. maxu

i ie e

c6. 0 1   

We use metaheuristics algorithms such as GA and 
PSO to search for the optimal offloading ratio and 
transmission power to reach the minimum cost. The main 
results of the performance of these algorithms are 
presented in the next session. 

V. EXPERIMENTAL RESULTS

We simulate and evaluate the performance of the GA
and PSO algorithms in this section. Figure 4 depicts our 
simulation scenario, which is similar to the scenarios used 
by previous authors [10] [12]. In detail, typical input 
parameters such as simulation area, coverage, and location 
of MEC host BTSs are assumed by previous authors to 
ensure objectivity in algorithm performance comparison. 

Figure 4. Simulation scenario 

Table 2. Simulation parameters 

Parameters Value 

The maximum iteration 50 

Population size 25 50 

Number of users 25 50 

Maximum servers in range for a UD 3 

Data volume of task (TaskSize) [40Kb; 

600Kb; 

1000Kb] 

BS signal coverage 250 m 

Edge server CPU frequency 10GHz 

BS bandwidth 10MHz 

User device transmission power 20 dBm 

Background noise 100 dBm 

The basic parameters of the simulation are 
summarized in Table 2.  

Figure 5. Cost vice versus iteration numbers 

The algorithm's convergence is one of the most critical 
aspects of metaheuristics algorithms. Figure 5 depicts the 
convergence of the GA and PSO algorithms over several 
interactive loops. As can be seen, the PSO algorithm's 
convergence reached the saturated cost metric around 25 
iterations. It brings a stable state more than that of the GA 
algorithm method. 

Figure 6. Total time consumption vice versus weight 
parameter ( ) 

Figure 6 demonstrates the total time consumption 
versus the weight parameter at the maximum iteration of 
50. The weight parameter represents balancing the energy
target and the delay. The results in Figure 6 show that the



alpha parameter influences the time constraint through the 
amount of time consumed. The PSO algorithm 
outperforms the GA algorithm due to its proclivity to 
prioritize the tight deadlines of the input tasks. PSO 
algorithm spends the least amount of time compared to the 
GA algorithm. It can be seen that the total time 
consumption of metaheuristic algorithms, GA and PSO, 
does not depend much on the weight parameter. 

Figure 7 shows the total energy consumption versus 
the weight parameter at the maximum iteration of 50. PSO 
has the best performance on the total energy consumption 
and keeps unchanged at the small value with the weight 
parameter. The GA algorithm's total energy consumption 
slightly fluctuates at a very high value. The gap in total 
energy consumption between PSO and GA reaches 50 J. 
In the fact that figure 7 shows the results from an energy 
perspective of a function of two energy and delay 
variables. In the general case, when the deadline is larger 
than the requirement task delays, the efficiency function 
becomes an optimal function of one energy variable. Hen, 
a good algorithm will give stable results in terms of 
adaptive energy with different weights. The results in the 
figure show that the response of PSO is better than GA in 
energy saving. 

Figure 7. Total energy consumption vs. weight ( ) 

Thus, the impact of the weight parameter on the cost, 
total time consumption, and total energy consumption of 
three metaheuristic algorithms, including the GA and PSO  

algorithm, is validated, showing that PSO exposes the 
efficiency in the total time consumption and total energy 
consumption but has a very high cost, while GA is 
reversed.   

The cost depends on the data volume of the task of 
two metaheuristic algorithms with the maximum iteration 
of 50, which is illustrated in Figure 8. The cost 
performance of GA is the worst. All two algorithms show 
that the optimal efficiency value varies with the input 
packet size and tends to be similar. It shows that the size 
of different tasks directly affects network performance. 
This conclusion is beneficial for IoT application 
deployment models according to the data traffic provided 
by the sensors. 

VI. CONCLUSION

This paper proposes a partial load offloading model
with a multi-user multi-servers scenario for mobile edge 
computing. We propose the PSO algorithm to apply to the 
offloading problem not mentioned in the literature. The 
numerical results of our proposed method have been 
examined with the GA algorithm on the exact scenarios. 
The performance parameters of the proposed method in 
the analytical method have shown that algorithm 
convergence and stability with weight change during 
optimization reduce time complexity. We hope to 
implement practical test systems as part of our ongoing 
work in the future. 
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MỘT LƯỢC ĐỒ HIỆU QUẢ CHO BÀI TOÁN GIẢM 
TẢI ĐIỆN TOÁN BIÊN DI ĐỘNG DỰA TRÊN 

THUẬT TOÁN PSO 

Tóm tắt: Mobile Edge Computing (MEC) đóng vai trò 
then chốt trong mục tiêu tích hợp Internet of things với 
các công nghệ nền tảng 5G và beyond. Không chỉ đóng 
vai trò như một phần kéo dài của điện toán đám mây cho 
mục tiêu phân tán dữ liệu, MEC cung cấp khả năng xử lý 
cục bộ, đảm bảo tính riêng tư, nâng cao tính bảo mật và 
tăng độ tin cậy của toàn hệ thống. Trong đó, bài toán giảm 
tải hệ thống đóng vai trò then chốt trong các mô hình xử 
lý dữ liệu, tính toán hay bảo mật. Tuy nhiên, bài toán này 
thuộc dạng NP-Hard do đặc tính đa mục tiêu và đa ràng 
buộc của chúng. Cụ thể, các nhiệm vụ yêu cầu giảm tải 
cần đạt đồng thời hai mục tiêu là năng lượng và độ trễ 
thực thi. Vì vậy, tiếp cận heuristics đã và đang là một xu 
hướng hiệu quả cho cả mục tiêu nghiên cứu lẫn triển khai. 
Nghiên cứu này sẽ trình bày một lược đồ giảm tải dựa trên 
thuật toán PSO để vượt qua các thách thức hiện nay. Các 
kết quả mô phỏng số trong bài báo này sẽ chứng minh đề 

xuất của chúng tôi hiệu quả hơn đề xuất sử dụng thuật 
toán di truyền của các tác giả khác. 

Từ khóa: Điện toán biên di động, bài toán giảm tải, 
các thuật toán kinh nghiệm, tối ưu bầy đàn. 
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