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Abstract:  Electroencephalography (EEG) is the
electrical activity of the human brain and thus plays an
important role to understand the cognitive function in
neuroscience and clinical settings. However, the
conventional EEG analyses based on the linear assumption
usually are limited to analyzing the nonlinear waveform of
brain signals. To address this issue, we present a data-
driven method for analyzing scalp EEG signals in the time-
frequency domain. Results from both simulation and
resting EEG demonstrated that temporal characteristics
and non-linear features can be revealed with Hilbert-
Huang transform without any prior assumptions. In
addition, the Hilbert-Huang transform is less affected by
the non-sinusoidal signals.

Fourier
signal,

Key words: Hilbert-Huang
transform, Wavelet,
electroencephalography.

transform,
non-linear

. INTRODUCTION

Electroencephalography is a non-invasive technique
with a high-temporal resolution that enables neuroscientists
to study the neurocognitive process in the human brain.
Because most cognitive processes such as cognitive,
perceptual, emotional, sensory, and working memory
processes usually are occurred in milliseconds to a few
seconds. Therefore, the EEG is suitable to capture these
dynamic cognitive events. The unit of EEG recording is
typically  microvolts. The early works in
electrophysiological research proved that the EEG
measurement is a direct reflection of the neuronal
oscillation which are rhythmic fluctuations of spiking
activity within neuronal populations [1]-[3].

Brain rhythms are categorized into frequency bands
including delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz),
beta (15-30 Hz), lower gamma (30-80 Hz), and upper
gamma (80 —150 Hz). Therefore, the brain oscillation in
the time-domain should be turned into the frequency
domain or time-frequency domain to acquire more
electrophysiological information.
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The Fourier transform is widely used in the frequency
analysis of brain rhythms and it is an important technique
to understand the collective neural activities in the brain in
neuroscience as well as in many other branches of science,
engineering, and technology. Conventional time-series
data decomposition methods (i.e., Fourier and wavelet
transform) are based on additive expansion which assumes
that the signal being dealt with is a linear operation.
Nevertheless, it is well-known that most brain oscillations
have nonlinear and non-stationary characteristics [4], [5]
which limit the amount of information extracted by
Fourier analysis [5]. The Wavelet transform is a better
option for real-world data scales, however, the correct
number of wavelets has to be chosen which requires a
priori knowledge of the possible frequency bands with
increased activity. Fourier and Wavelet also share a
problem of blurred representation originating from
integral transforms and the challenge of choosing the
appropriate time window resolution since increasing time
resolution decreases the frequency resolution and vice
versa (i.e. uncertainty principle). Thus the high temporal
resolution of signals cannot be fully observed with these
conventional Fourier-based analyses. To resolve these
limitations of traditional methods, Hilbert-Huang
transform (HHT) was used as a potential approach for the
examination of non-linear signals in this study. HHT
consists of two parts: EMD/ensemble empirical mode
decomposition (EEMD) and Hilbert spectral analysis (has)
[6]. EMD is an adaptive and data-driven manner without
the linearity assumption, decomposes the intrinsic nature
of the raw signal adaptively into single modes, known as
intrinsic mode functions (IMFs). After decomposition,
HSA can then be adopted in any IMF to gather the local
energy and instantaneous frequency information to
produce HHT [6], [7]. Therefore, it partly resolved the
flaws in existing spectral analytical methods (such as
Fourier analysis and wavelet analysis), which rely on
additive expansions and linear assumption [8].

However, the evaluation of HHT performance on the
non-sinusoidal oscillation remains unclear. Thus, it is
essential to evaluate the effects of non-sinusoidal signals on
the traditional method and HHT. The organization of this
paper is as follows: In Section Il, the introduction of HHT
for analyzing the non-sinusoidal signals are presented; in
section 111, the simulation and experimental results are
listed; in section 1V, conclusions are described.
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. EEG ANALYSIS BASED ON HILBERT-HUANG
TRANSFORM

This technique was originally applied to geophysical
signals and has been proved to be useful for nonlinear
time-series analysis by using an empirical mode
decomposition (EMD) approach. EMD is an adaptive and
data-driven manner without the linearity assumption,
decomposes the intrinsic nature of the raw signal
adaptively into single modes, known as intrinsic mode
functions (IMFs). That is, each successive EMD will
generate an IMF with lower oscillations than the previous
IMF and naturally retain the physical properties of the
signal. After decomposition, Hilbert transform can then be
used in any IMF to gather the local energy and
instantaneous frequency information to produce HHT.
Thus, it partly resolved the flaws in existing spectral
analytical methods (e.g., Fourier and Wavelet methods),
which rely on additive expansions and linear assumption
and thus, it has been widely applied to biological, medical,
engineering, structural safety monitoring, and climate
studies worldwide.

A. Empirical Mode Decomposition:

EMD is an adaptive and data-driven manner without the
linearity assumption, decomposes the intrinsic nature of
the raw signal adaptively into single modes, known as
intrinsic mode functions (IMFs):

x(t) = Z IME;(t) + 1,(2) (1)
=1

1. Letx(t) be the input data, the following steps presents
the process used for identifying IMFs: ldentify time-
series local maxima and minima of x(t)

2. Perform a cubic spline interpolation between all local
maxima to compute the upper envelope emax(t) and
the lower envelope emin(t).

3. Estimate the mean value of each data time-point
between the upper and lower envelope as mi(t) =
(emax(t) + emin(t))/2

4. Subtract the mean value from the original signal to
provide the local components hi(t) = X(t)-ma(t).

5. The sifting procedure was applied to guarantee the
component ~1(t) satisfied the condition to be an
IMF. The stopping criterion of the sifting process is
defined in the Eq. (2) by using a standard deviation

(SD), & , computed from the two consecutive
components as:

- )
_ | Ay (m-1) () = hagmy ()]

S5 =
h? 1(m-1) (t)

t=0

A threshold value for SD can be set between 0.2 and 0.3 to
stop the sifting process [6]. The process is repeated until
only a monotonic time-series or residue ry(t) remains,
indicating the trend of x(t). Customized Matlab
(MathWorks) scripts with ensemble EMD code provided
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by the Research Center for Adaptive Data Analysis of
National Central University, Taiwan was used for
applying HHT [9], [10].

B. Hilbert spectral analysis:

After decomposition, the IMFs obtained by EEMD
ensure the performance of Hilbert transform on each
IMF with its clear definition of an instantaneous phase
and amplitude to produce HHT. Thus, Hilbert
transform is applied to each IMF and can be expressed
as Eq. (3):

H[IMFi(t)] =

1 IMFi(o) ®)
—PV f dt
VA - T

—00

Where PV is the Cauchy Principal Value, thus, a
complex analytic signal IMF*(t) can be derived and
expressed as Eq. (4):

IMFi*(t) = IMFi(t) + iH[IMFi(t)]  (4)
= A(t)e"®

where A(t), 6(t) are defined as the amplitude function
and phase of IMFi(t), respectively.

lll. RESULTS

A. Simulation results

To evaluate the effectiveness in analyzing the
nonlinear signals of the proposed approach, in this
section, the current study evaluated the effects of
nonlinear signals on the performance of HHT
compared with FFT and Wavelet (WL).

Case 1:

Figure 1 shows the noiseless 14 Hz sinusoidal signal (S,
black line) and its power spectrum in the frequency
domain (FFT) and time-frequency domain (i.e., WL and
HHT). The results show that the FFT spectrum displays
an amplitude at a single peak of 14 Hz while WL and
HHT enable to show amplitude increases at 14 Hz
across time domain.
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Figure 1. Power spectra of noiseless sinusoidal
signal analyzed by traditional methods and
Hilbert-Huang transform.

Case 2:
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To validate the effect of non-linear signals on these
methods, the current study generated a 14 Hz signal
with non-linear signals by controlling the degree of non-
linearity [11]. The non-linear signal was generated as

Eqg. (5):

_rsing | (5)
11112
1 —rcos(wt + ¢)

[sin(wt) +

X@t)=U,J1—12

Where U,, represents amplitude, w represents the
angular frequency and ¢ is phase (—m/2 < ¢ < /2).
The parameter r (-1 <r < 1) is determined as the degree
of non-linearity and is set to 0.4 (i.e., the signal is now
highly distorted and non-linear). Figure 2 displays the
outcomes of FFT, WL, and HHT for the simulated data.
In the frequency domain, a clear peak at 14 Hz was
present for FFT. However, in addition to the frequency
of 14 Hz, FFT also displays the spurious harmonics in
the spectrum. Similar to the results of FFT, Wavelet
decomposed the non-linear signals into several
harmonics as shown in Figure. In contrast, HHT shows
clearly the physical meaning of the signal with a varying
amplitude at a broadband frequency (10-18 Hz).

Non-sinusoidal signal Wavelet spectrum
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Figure 4. Power spectra of noiseless sinusoidal signal
analyzed by traditional methods and Hilbert-Huang
transform.

Case 3:

These approaches were then validated by analyzing the
amplitude modulation (AM), in which one sinusoidal
signal was a carrier oscillation (f:=14Hz) and the
modulating signal was selected to 2 Hz (fn=2Hz).
Figure3 shows the power spectra of FFT, WL, and HHT
for this simulated data. The FFT spectrum shows an
amplitude at a peak of 14 Hz and two side-bands while WL
and HHT enable to show the varying amplitudes at 14 Hz
across time domain, indicating that these methods were
capable to capture the physical meaning of the amplitude
modulation.
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Amplitude modulation Wavelet spectrum
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Figure 2. Power spectra of noiseless AM
signal analyzed by traditional methods and
Hilbert-Huang transform.

Case 4:

In addition to the above example, here, this study also
discusses another case of a non-sinusoidal signal using
an exponent of 2 (i.e., 24M®), Although Fourier
transform could obtain the fundamental frequencies.
That is the amplitude at a peak of 14 Hz and two
sidebands. This non-sinusoidal waveform shape also
produced multiple harmonics. Similar to FFT, Wavelet
shows multiple harmonics. In addition, Wavelet can
not fully display the varying amplitudes over time as
shown in HHT (Figure 4).
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Figure 3. Power spectra of non-linear AM signal
analyzed by traditional methods and Hilbert-Huang
transform.

B. Experimental results

Instead of the synthesized data, here real-time EEG data
showing the Steady-state visually evoked potential
(SSVEP) phenomenon was analyzed to validate the
capability of the proposed methods as shown in the
simulation data. The SSVEPs data of single-subject
elicited by 3-Hz flicker at Oz channel used in this study
were reported originally by Juan et al., 2021 [12] . Figure
5 shows the power spectrum in the frequency domain
(FFT) and time-frequency domain (i.e., WL and HHT).
That is, the power increase was observed at 6 Hz and 9 Hz
in both frequency domain and time-frequency domain.
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Figure 5. The power spectra of a single subject SSVEPs
induced by 3-Hz flicker.

V. CONCLUSION

In this study, we have confirmed the Hilbert-Huang
transform as an effective approach to analyze the non-
linear oscillations. We evaluated the performance of this
method compared to the previous method (i.e., FFT and
Wavelet). The results in numerical experiments using
simulation and electrophysiology data show that the
Fourier transform, Wavelet, and Hilbert-Huang transform
provide clear power spectra. However, since FFT and
Wavelet may be limited to analyzing the non-sinusoidal
signals, these methods were difficult to confirm the real
phenomena in the brain oscillations. In contrast, the HHT
were less affected by the non-sinusoidal waveform, thus,
the findings of the HHT method provide clear
physiological evidence in support of the existence of real
phenomena in the human brain.
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PHAN TiCH PHO THOI GIAN VA TAN
SO CUA TIN HIEU PIEN NAO PO DUA
TREN PHUONG PHAP HILBERT
HUANG TRANSFORM

Abstract: Tin hiéu dién ndo la mot hoat dong dién cua
ndo ngudi va do d6 dong mot vai trd quan trong dé hiéu
dugc chirc nang nhan thiac va duoc st dung trong 1am
sang. Tuy nhién, cac phuong phap phan tich tin hi¢u di¢n
ndo truyén thong dua trén gia sir tuyén tin thuong bi gidi
han khi phan tich mot dang tin hiéu ndo phi tuyén. Bé giai
quyét diéu nay, nghién ciu ndy sir dung mot phuong phép
phan tich huéng dir lidu cho viéc phan tich dién ndo d6
trong mién thoi gian va tan sb. Két qua tir ca tin hiéu mo
phong va dién ndo d& minh hoa rang cac tinh ning phi
tuyén va bién dong thoi gian c6 thé dugc 1am sang to dung
phuong phéap Hilbert-Huang transform ma khéng st dung
gia thuyét da biét. Thém vao d6, phuong phép
HilbertHuang transform it bi anh huong béi tin hiéu phi
tuyen.
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