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Abstract— The ensemble is a popular machine learning 

technique based on the principle of divide and conquer. In 

data clustering, the ensemble aims to improve performance 

in terms of processing speed and clustering quality. Most 

existing ensemble methods face inherent complex 

challenges such as uncertainty, ambiguity, and overlap. 

Fuzzy clustering has recently been developed to handle 

data with many-feature, heterogeneity, uncertainty, and big 

data. In this paper, we propose an ensemble feature-

reduction clustering model (EFRC) using advanced 

machine learning techniques. The EFRC model consists of 

three phases. First, the data is feature-reduced by a random 

projection. Then, the data is divided into subsets based on 

the likelihood of overlap and quantification of noise. 

Various clustering techniques are used to cluster the subset 

of data. Finally, the results of the clustering modules are 

consensus using the classification technique to produce the 

final clustering result. Several tests were performed on the 

benchmark datasets. The test results show the superior 

performance of the EFRC model compared to the previous 

models.   

Keywords— Clustering, classification, ensemble model, 

feature reduction, many-feature, big-data. 

I. INTRODUCTION 

A data clustering groups data objects in such a way 

that each object is assigned to the same group (called a 

cluster) with other objects similar to it [1]. It is a popular 

technique for statistical data analysis, used in many fields, 

including data mining, machine learning, pattern 

recognition, image analysis, information retrieval, 

bioinformatics, data compression, and computer graphics 

[2]. Some common clustering techniques, used for small-

scale datasets, are fuzzy C-means (FCM) and K-means 

(KM). In [3], fuzzy co-clustering (FCoC) is used to classify 

high-dimensional data (for example, HSI). Unfortunately, 

those conventional clustering techniques are often not very 

efficient when dealing with complex, heterogeneous, high-

volume, and rapidly generated data. New efficient 

clustering methods and tools are needed to be able to 

extract valuable information from huge amounts of data. 

An ensemble is a popular machine learning 

technique based on the principle of divide and conquer. It  

is built with a set of independent and parallelizable 

individual models, whose outputs are combined with a 

decision synthesis strategy to produce a single outcome for 

a problem. certain [4]. Models can be classification, 

prediction, regression, or clustering, which the set is 

designed to perform [5]. Clustering ensemble is a machine 

learning method for data clustering. It combines multiple 

clustering models to produce better results than individual 

clustering algorithms in terms of consistency and quality 

[6]. Since clustering ensemble was proposed, it has rapidly 

gained much attention. There are some recent research on 

the ensemble in machine learning fields such as the mining 

industry [7], biology and medicine [8], pattern recognition 

[9], categorical data [10], image processing [11, 14], 

environmental management [12], and big data processing 

[13]. Generally, the clustering ensemble is very effective 

in unsupervised learning. It is suitable for more datasets 

than traditional single clustering, and it is also robust 

against noise and outliers. However, most existing 

ensemble algorithms are based on a static model, they 

become more difficult due to the inherent complexities 

such as uncertainty, vagueness, and overlapping. In this 

paper, we propose a many-feature data clustering model 

using advanced machine learning techniques, called the 

ensemble feature-reduction clustering model (EFRC). It 

consists of three stages. First, data is reduced-feature using 

a random projection. Then, second, we divide the data into 

smaller data subsets by qualifying the noise or the overlap. 

And then, the different objective functions are used to 

cluster data subsets in parallel. Finally, the results from the 

clustering modules are combined with a classification 

technique to create the final classification result. 

Experimental results on benchmark datasets demonstrate 

the superior performance of the EFRC model compared to 

the previous models.  

The rest of the paper is organized as follows. Section II 

presents the recent work done in the areas of clustering 

ensemble. Section III introduces the main concepts and 
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methods used in the study. The proposed EFRC clustering 

model is also presented in this section. Then the data used 

along with the experimental settings are described in 

Section IV. Section V is the conclusion and future work.   

II. RELATED WORKS 

In this section, we will present a summary of the main 

theoretical issues related to the clustering model. Includes 

model structure, base clusterings, clustering consensus, 

and clustering ensemble quality assessment. 

A. Clustering  ensemble model 

A clustering ensemble model usually consists of three 

stages performed in order: data preprocessing, clustering, 

and clustering ensemble quality assessment. X. Wu et al. 

[6] have defined the clustering ensemble as follows: There 

is a dataset  1 2, ,..., nX x x x=  that has n data point. 

Data X is divided into m different data subsets 

 1 2,  ,  ,  mX X X X=  . Then, m clustering 

algorithms (base clusterings) are used to clustering these 

data subsets ( )1,  2,  ,iX i m=  and generate m 

different partitions  1 2,,  ,  mP P P P=  . A consensus 

function is used to ensemble the result partitions 

 1 2,,  ,  mP P P P=  to obtain the clustering result P*. 

Finally, the estimated indexes are used to evaluate the 

clustering quality and give the final clustering results. The 

traditional clustering ensemble model is shown in Fig. 1. 

The component modules of the clustering ensemble model 

are presented in sections B, C, and D below. 

 

 

 

 

 

 

 

Fig. 1.  Traditional clustering ensemble modelBase clustering modules 

In the clustering ensemble model, the base clusterings 

are the basic components in the clustering stage. The base 

clusterings can be different clustering techniques to cluster 

the corresponding data. In this paper, we are motivated 

mainly by demonstrating the working mechanism and 

demonstrating the effectiveness of a clustering ensemble 

machine learning approach. Therefore, we will select some 

popular clustering algorithms such as KM [2], FCM [15], 

FCoC [16] and IVFCoC [17] for our purposes. These four 

clustering algorithms have different mathematical 

structures and different data objects. These algorithms 

have their advantages and disadvantages in terms of cluster 

processing time complexity and accuracy.  

B. Consensus function module 

In the clustering ensemble model, the consensus 

function module is implemented with a clustering or 

classification technique to consensus results obtained from 

the clustering stage. The result obtained by the consensus 

function module is the final clustering result of the original 

dataset. 

To get the final clustering result, a consensus function is 

used to group m results of base clusterings into k different 

clusters. Several consensus functions have been developed 

to produce the final data clustering result. Recently, we 

have introduced a clustering tendency assessment method 

SACT [3] applied in hyperspectral image classification. 

The SACT is viewed as a consensus function based on 

graph-based approaches. In the EFRC model, we use 

SACT as a consensus function to classify the partitions 

obtained from base clusterings into the final clustering 

result. We first aggregate the partitions obtained from the 

base clusterings into a set of mxk partitions. Next, we 

represent the partitions as super-objects that are 

represented by cluster centers and data object lists. Then, 

the SACT algorithm is used to group the set of mxc super-

objects into k final clustering result clusters. 

C. Cluster evaluation module 

The cluster evaluation module is used to evaluate 

the clustering quality obtained from the consensus function 

module. This module will quantify cluster evaluation 

indicators. There are two groups of cluster evaluation 

indexes: supervised indexes and unsupervised indexes. 

Table 1 lists a list of cluster evaluation indicators. 

Table 1. Cluster evaluation indexes 

Type Name Denote Best If Range 

S
u

p
er

v
is

ed
 

Accuracy rate [19] AR High 0,1 

Recall index [20] RcI High 0,1 

Precision index [20] PcI High 0,1 

F1 score [21] F1 High 0,1 

U
n

su
p

er
v

is
ed

 

Mean Squared Error 

[29] 
MSE Low 0,+ 

Image Quality Index 

[30]  
IQI High 0,1 

Cluster 

evaluation 

Clustering 1 

Clustering 2 

 

Clustering m 

Data X 
Consensus 

function 

X1 

X2 

Xm 

P1 

P2 

Pm 

P* 
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Davies-Bouldins index 

[31] 
DBI Low -,+ 

Xie and Benis index 

[31] 
XBI Low -,+ 

Supervised evaluation indexes are used to evaluate cluster 

quality on labeled datasets. Supervised evaluation indexes 

include Accuracy rate [19] (AR), Recall index [20] 

(Recall), Precision index [20] (Pre.) and Rand index [21] 

(RI). Where higher values indicate better clustering results. 

These indexes are often used in the clustering consensus 

module to evaluate the cluster quality of the final clustering 

results.  

Unsupervised evaluation indexes are used to evaluate 

cluster quality on unlabeled datasets. Unsupervised 

evaluation indexes include Mean Squared Error [22] 

(MSE), Image Quality Index [23] (IQI), Davies-Bouldins 

index [24] (DBI). and Xie and Benis index [24] (XBI). 

Where, lower values of the MSE, DBI, and XBI indices, 

while higher values of the IQI indicate better clustering 

results. These indexes are often used in the clustering 

consensus module to evaluate the cluster quality of base 

clustering and clustering consensus modules. 

III. EFRC MODEL 

A. EFRC  model 

Let X be the input dataset in a d-dimensional space, k be 

the cluster number of the data, M be a set of unsupervised 

clustering modules and a classification module U. The 

clustering ensemble problem aims to form a 3-stage 

classification model: Firstly, the original X dataset is 

divided into m different data subsets X={X1, X2, …, Xm}; 

then the M is used to cluster each data subset into k 

different clusters. Thus we obtain |C|= m * k component 

clusters; Finally, the U is used to classify the component 

clusters into k different classes. The model of EFRC  is 

shown in Fig. 2. 

The clustering ensemble model consists of ten basic 

components that are shown in Eq. (1).  

  , ,  ,  ,  ,  ,  ,  ,  ,  m R X P D S M T U H=       (1) 

1. Size of model m 

m is the number of base clusterings [6, 10, 14] of 

the EFRC  model. m is called the size of the model, m is a 

positive integer.  

2. The data space R 

R is a real number field. 

3. Input data X 

X is the input dataset.  

 1,
{ },  ,  

i niX d s x
=

=        (2) 

Where, d is the number of features of the data, s number of 

data sources. X be the input dataset in a d-dimensional 

space  1 2,  ,  ,  nX x x x=  , , 1,d

ix R i n = . X can 

be a single-source dataset, or X can also be aggregated from 

different s-source datasets X={X1, X2, …, Xs}. 

When s = m, each data subset for each module is 

taken from a separate data source. When s< m, some large 

input data sources can be separated into small datasets to 

provide enough for each processing module. When s> m, 

some small input data sources can be merged into a larger 

dataset to provide enough for each processing module.   

 

Fig. 2. The ensemble feature-reduction clustering model 

EFRC  

4. Data preprocessing module P 

P=P(X) is the pre-processing techniques such as 

dimensional reduction techniques (PR, PCA, or Sammon) 

or noise filtering techniques, feature selection, etc. 

Dimensionality reduction techniques have been 

studied and applied in many fields of data mining such as 

data classification and clustering [25]. In data clustering, 

especially for datasets with a large number of dimensions, 

dimensional reduction techniques are used as a 

preprocessing step before clustering to produce the main 

clustering results more accurately and to improve 

clustering times. The selection of an appropriate dimension 

reduction technique can help to enhance the processing 

speed and reduce the time and effort required to extract 

valuable information. Currently, there are many different 

dimensionality reduction methods such as Principal 

Components Analysis (PCA) [26], Random Projection 

(RP) [27], Sammon [28], FRFCoC [29]. In this paper, we 

use the Random projection algorithm to reduce the 

clustering data feature because it is a powerful method of 

dimensionality reduction that is noted for its simplicity 

[30]. Random projection is a powerful dimension reduction 

technique that uses random projection matrices to project 

data from a high-dimensional subspace to a low-

dimensional subspace [31]. 
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5. Data spliting module D 

D=D(X, m, )        (3) 

D is the data splitting module that divides X data 

into m different data subsets,  1 2,  ,  ,  mX X X X=  , 

satisfying  1 2 ... mX X X X=     and

1 2 ... mX X X   = .  

mi is the number of items in Xi, that is 

, d

i i ijm X x R=  , Xi={xi1, xi2, …, ximi}.  

={1, 2, …, m} is a set of influence factors, i 

is the influence coefficient of the data module Xi. i 

determined by the ruleset (4). 

1

 is small and clearly,   0

 is low-dimensions and uncertainty,   1         (4)

 is high-dimensions or uncertainty,   2

 is high-dimensions and

 

 high-unc

 

ertain ,  

 

 ty

R

if X theni i

if X theni i

if X theni i

if X ti






=

=

=

=

 3hen i =








 

6. Clustering algorithm selection module 

( ),S S A =         (5) 

S is a clustering algorithm selection function. S={S1, 

S2, …, Sm}. 

Where,  

 A={KM, FCM, FCoC, IVFCoC} is the list of 

clustering algorithms that have been presented in section 2. 

 ={1, 2, …, m} is the set of influence factors. 

Si is a clustering algorithm for module ith, Si is determined 

by the ruleset (6).  

2

 0   

 1   

 2   

 3   

if then S K means algorithmi i

if then S F cmeans algorithmi i

if then S FCoC algorithmi i

if then S IVFCoC algorithmi i

R









=

= = −

= = −

= =

= =








   (6) 

Currently, there are many different efficient 

algorithms. But using the four algorithms KM, FCM, 

FCoC, and IVFCoC is only a specific illustration of a 

proposed model, not a rigid one. We can integrate any 

algorithm so that it fits our actual needs. 

7. Data clustering modules 

( ), , , ,  M X k A I CM =       (7) 

Where, input dataset of clustering modules: X={X1, 

X2, …, Xm} are data subsets; k is the number of data clusters; 

A={A1, A2, …, Am} is a set of clustering algorithms. 

Algorithm Ai is used to cluster each subset Xi into k 

different clusters. I is a set of indicators used to evaluate 

cluster quality (set of quality evaluation indicators), 

 ,  ,  ,  I MSE IQI DBI XBI= (see Table 1). Through I, 

during the learning repetition, if a module has a better 

clustering quality, the clustering results of that module can 

be shared with the remaining modules. Set of clustering 

results: C is the result set of clustering modules 

 ,  , ..,  1 2C C C Cm= ,   ,  , ..,  1 2C C C Ci i i ik
= , 

, 1, , 1,
D

C Rij i m j k = = . 

Each module ( ), , , ,  M X k A I Ci i ii i
M = is used to 

group data subsets Xi into k clusters. Where Ai is the 

clustering algorithm, I is the index set shared for the 

clustering modules, and Ci is the clustering result set of the 

clustering module Mi. 

8. Knowledge exchange module T 

T=T(C) is a function that converts clustering 

knowledge output at each clustering iteration between 

clustering modules. 

9. The base clustering consensus module 

U is a module to consensus the cluster results to 

obtain global cluster results. 

( ),  ,  ,  ,  U U C k A O I=      (8) 

a) The input of clustering consensus module 

C is the input of clustering consensus module, 

 ,  ,  ,  1 2C C C Cm=  ,  ,  ,  ,  1 2C C C Ci i i ik
=  , 

, 1, , 1,
D

C Rij i m j k = = . That is, *C m k= . 

b) Number of data layers: k is the number of data 

clusters. 

c) Clustering consensus technique A:  

A is a clustering consensus technique. Algorithm A is used 

to classify m*k items of C into k different clusters. The 

consensus technique could be a classification technique 

such as Logistic regression or Naive Bayes classifier or 

Support vector machines. Then, the EFRC model is called 

the supervised clustering ensemble model. The consensus 

technique can also be an unsupervised clustering technique 

such as KM, FCM, FCoC, or IVFCoC. Then, the EFRC 

model was called the unsupervised clustering ensemble 

model. 

d)  The output of clustering consensus module: 

O is the output of clustering consensus module, O={O1, 

O2, …, Ok}, 1,i k=  are the result clusters, 

 ,1 ,2 ,, ,...,i i i i niO x x x= , i in O=  is the number of 

data objects in the resulting cluster Oi, xi,jRd is the jth 

data object in the resulting cluster Oi. 

e) Clustering quality evaluation indexes:  

I is a set of indicators used to evaluate the quality of 

clustering result unifying. If A is a classification technique, 
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then I is a set of supervised indexes, 

 ,  ,  ,  I MSE IQI DBI XBI= . Else if A is an unsupervised 

clustering technique, then I is a set of unsupervised 

indexes,  ,  ,  ,  1AR RcI PcII F= (see Table 1). 

10. The global clustering result display module 

( ), I OH H=         (9) 

H is the global clustering result display module, I is a set 

of the consensus quality evaluation indexes. O is the set of 

final results of the EFRC model, includes the class center 

and the distribution of the items in each class. 

B. Compare EFRC with some other machine learning 

models 

 To have a better view of the EFRC model, let us 

compare EFRC with some other data processing models 

that are similar to the parallel processing model and the 

swarm intelligence model. The processing modules in  

these models are called individuals. The parallel and 

swarm models consisting of similar individuals so they can 

be called swarms. EFRC consists of different individuals, 

so EFRC can be called the combination swarm or the 

population. In Table 2, the basic characteristics of the 

EFRC model are compared with the swarm models and 

parallel processing models. According to the comparison 

results in Table 2, we can easily see that the EFRC model 

has outstanding advantages compared to other models. 

C. EFRC  algorithm 

Based on the EFRC  model presented and analyzed in 

Section 2 and the association of the components in the 

EFRC model are depicted in Fig. 2, we build a clustering 

algorithm. We call the algorithm EFRC as indicated in 

algorithm 1 below. 

 

 

Table 2. Compare EFRC  model with swarm models and parallel processing models 

Features EFRC model Swarm models Parallel processing models 

Data Dividing for the individuals Sharing for the individuals Dividing for the individuals 

Data effects Estimating coefficients that 

affect sub datasets 

No No 

Objective 

function 

Multi-objective Multi-objective Single-objective 

Processing Parallel processing between the 

individuals on different sub 

datasets 

Parallel processing between 

the individuals on the same 

dataset 

Parallel processing between 

the individuals on different 

sub datasets  

Knowledge Exchanging between the 

individuals 

Exchanging between the 

individuals 

No 

Processing 

strategies 

3 steps: Step 1 reduce data 

features, step 2 clustering on the 

individuals, and step 3 

aggregating clustering results  

1 step: Searching and 

selecting the best result 

2 steps: Step 1 clustering on 

the individuals, step 2 

clustering results of the 

individuals into the final 

result 

Algorithm 1. Pseudocode of the ensemble feature-

reduction clustering algorithm EFRC  

Input: Dataset X 

Output: The clustering results 

1. Initialize parameters of 

={m,R,X,P,D,S,M,T,U,H} 

2. Reading structured input data I={X, d, s}. 

3. Reduce features of data. 

4. Split data into m components using D=D(X, m, 

α) and determine the rule R1  

5. Clustering algorithm selection using function 

S=S(A,a) and the rule R2  

6. Begin repeat 

7. Clustering on modules M(X,k,A,I,C);  

8. Quantify indexes I={MSE, IQI, DBI,XBI}. 

9. Quantify the knowledge on each module T=T(C). 

10. Compare the knowledge on each module. If it is 

better, share it with the other individuals. 
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11. Check the stop condition on each clustering 

module.  

12. End repeat: All clustering modules complete? 

13. Consensus clustering results using 

U={C,k,A,O,I}. 

14. Quantify the estimating indicators I={Pre., 

Rec., F1, Acc.}. 

15. Output the clustering result H={I,O}. 

In algorithm 1, the stopping condition in step 11 

ensures that all basic clusterings converge on the criterion 

that the membership function does not change after a few 

iterations. Mean,  

( ) ( )1 1 1m m

i iU U  = =− −       (10) 

The algorithm based on the EFRC model has some 

improvements compared to traditional clustering ensemble 

models such as feature reduction in step 3, multi-objective 

base clusterings in step 5, quantification of cluster quality 

index in step 8, select the best centroid in step 9 and share 

the best centroid for other base clusterings. 

IV. EXPERIMENT RESULTS 

In this section, we present some experimental 

results to simulate the working mechanism of the EFRC 

model and demonstrate the effectiveness of the proposed 

clustering ensemble method. The EFRC model is a 

combination of four single algorithms KM, FCM, FCoC, 

and IVFCoC for four base clusterings. In the EFRC model, 

we use a random projection algorithm to reduce the 

features of the data.  We divide the original dataset into 

four equal parts and give each base clustering one part of 

the data. We used the Silhouette-Based Assessment of 

Cluster Tendency algorithm [3] to assess the clustering 

tendency of clusters obtained from four clustering 

modules. 

For a fair comparison, we have installed clustering 

experiments along with state-of-the-art methods such as 

single clustering (KM, FCM, FCoC, and IVFCoC) and 

single-objective clustering ensemble (eFCoC) methods. 

However, in the single clustering experiments, the 

experimental results of KM on multi-feature data are of too 

low quality compared with other FCM, FCoC and IVFCoC 

single fuzzy algorithms. Therefore, we do not state the test 

results with KM.  

To quantify the clustering quality of different 

algorithms, we use the indices Accuracy rate [19], Recall 

index [20], Precision index [20], and F1 score [21]. The 

higher the index value, the better the corresponding cluster 

quality (see Table 1). 

 
1 http://cs.joensuu.fi/sipu/datasets/ 

Experiments are implemented on Windows 7 of HP 

Elitebook 8560W, Core i7-2670QM, 8 GB RAM, NVIDIA 

Quadro 2000M, and C#.Net development environment.  

Firstly, we present experimental results on the 

many-feature datasets and small size. Includes three 

datasets Dim256, Dim512, and Dim1024 which were 

downloaded from the clustering data repository of the 

School of the Computing University of Eastern Finland1. 

These datasets have many features d from 256 to 1024 and 

1024 data objects are evenly distributed over 16 Gaussian 

clusters. Each cluster has 64 data objects in sequential 

order. The statistics of these datasets are summarized in 

Table 3.  

Table 3. The details of used benchmark datasets. 

Name Size #Clusters #Features 

Dim256 1024 16 256 

Dim512 1024 16 512 

Dim1024 1024 16 1024 

PEMS-SF 440 7 138672 

Radar 325834 7 175 

The goal of these experiments is to prove that the 

clustering quality of the EFRC algorithm is superior to its 

single algorithm. The use of small and labeled datasets will 

help us to easily control the operation progress of our 

experiments. The experimental results are quantified by the 

validity indexes in Table 4. In Table 4, we highlight the 

best results in bold. 

Table 4. Clustering results of algorithms FCM, FCoC, 

IVFCoC, eFCoC and EFRC on datasets Dim128, Dim256 

and Dim1024 

Datas

ets 
Alg. Pre. Rec. F1 Acc. 

Time  

(Sec) 

D
im

2
5

6
 

FCM 0.846 0.830 0.830 0.860 14.8 

FCoC 0.951 0.950 0.950 0.953 12.2 

IVFCoC 0.982 0.981 0.981 0.982 26.9 

eFCoC 0.982 0.967 0.973 0.980 1.24 

EFRC  0.998 0.997 0.997 0.997 4.12 

D
im

5
1

2
 

FCM 0.828 0.818 0.819 0.850 19.6 

FCoC 0.960 0.959 0.959 0.961 13.5 

IVFCoC 0.987 0.986 0.986 0.987 42.6 

eFCoC 0.990 0.984 0.990 0.992 1.83 

EFRC  0.996 0.995 0.995 0.995 3.45 

D
im

1
0

2
4
 FCM 0.817 0.812 0.810 0.848 25.3 

FCoC 0.956 0.955 0.955 0.957 22.8 

IVFCoC 0.990 0.990 0.990 0.990 59.3 
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eFCoC 0.989 0.991 0.990 0.990 2.35 

EFRC  0.998 0.997 0.997 0.997 5.21 

In Table 3, we easily see that the value of the 

indexes obtained from our method is better than the 

previously proposed algorithm. Meanwhile, the time 

consumed by the eFCoC algorithm is the smallest. The 

results in Table 3 show that the time consumption of the 

EFRC algorithm is higher than that of the eFCoC 

algorithm. This can be explained as follows: Theoretically, 

the computational complexity of the EFRC algorithm is 

higher than single algorithms and the eFCoC algorithm 

because EFRC adds a few functions such as feature 

reduction, multi-object, and optimal centroid sharing. 

These improvements make the EFRC algorithm more 

accurate than traditional algorithms. For time 

consumption: Although the computational complexity of 

EFRC is higher than other algorithms, the base clusterings 

are installed in parallel on 25% of the original data, so the 

total time consumption is lower than other single 

algorithms. However, since the base clusterings of the 

eFCoC are also installed in parallel on 25% of the data, the 

consumption time of the eFCoC is lower than the EFRC 

algorithm. This is completely logical. In the next 

experiments, we cluster on the many-feature and labeled 

datasets. The goal of these experiments is to demonstrate 

the potential of the EFRC  algorithm on real datasets. The 

two datasets are downloaded from the UCI Machine 

Learning Repository2. The data set PEMS-SF is 400 MB in 

size and includes 440 data objects. This dataset has 138672 

features and 440 data objects that are grouped into seven 

different clusters. This data describes the occupancy rate, 

between 0 and 1, of different car lanes of San Francisco 

bay area freeways. Measurements cover the period from 

Jan. 1st, 2008 to Mar. 30th, 2009 and are sampled every 10 

minutes. We treat each day in this database as a single time 

series of dimension 963 (the number of sensors that 

functioned consistently throughout the studied period) and 

length 6 x 24=144. This results in a database of 440 time 

series correspond to 440 data objects. Each data object is 

labeled with an integer in {1,2,3,4,5,6,7} corresponding to 

a day of the week from Monday to Sunday. 

The radar dataset is 411MB in size and 325834 data 

objects with the number of features is 175. Radar dataset is 

a fused bi-temporal optical-radar data for cropland 

classification. The images were collected by RapidEye 

satellites (optical) and the Unmanned Aerial Vehicle 

Synthetic Aperture Radar (UAVSAR) system (Radar) over 

an agricultural region near Winnipeg, Manitoba, Canada in 

2012. There are 2 * 49 radar features and 2 * 38 optical 

features for two dates: 05 and 14 July 2012. Seven crop 

type classes exist for this dataset as follows: 1-Corn; 2-

Peas; 3- Canola; 4-Soybeans; 5- Oats; 6- Wheat; and 7-

Broadleaf. The statistics of these datasets are summarized 

in Table 3. The experimental results are quantified by the 

validity indexes in Table 5. 

 

 
2 https://archive.ics.uci.edu/ml/datasets.php 

Table 5. Clustering results of algorithms FCM, FCoC, 

IVFCoC, eFCoC and EFRC on datasets PEMS-SF and 

Radar 

Datas

ets 
Alg. Prec. Rec. F1 Acc. 

Time 

(min) 

P
E

M
S

-S
F

 

FCM 0.853 0.840 0.846 0.875 118 

FCoC 0.946 0.946 0.946 0.949 96 

IVFCoC 0.965 0.964 0.964 0.965 138 

eFCoC 0.953 0.951 0.953 0.954 34 

EFRC  0.978 0.978 0.977 0.981 10 

R
ad

ar
 

FCM 0.846 0.842 0.846 0.845 142 

FCoC 0.932 0.931 0.933 0.933 116 

IVFCoC 0.947 0.943 0.946 0.944 205 

eFCoC 0.965 0.962 0.967 0.966 39 

EFRC 0.988 0.986 0.988 0.986 20 

 

Table 4 also shows us, the value of the indexes 

obtained from the proposed algorithm is better than the 

previously proposed algorithm. In addition, the time 

consumption of the proposed algorithm is smaller than that 

of the previously proposed algorithms. Once again, we can 

learn from Table 4 that the EFRC  algorithm has obvious 

advantages over the other four methods in many-feature 

data clustering. The average correct clustering rate of the 

EFRC  algorithm is higher than that of other methods. The 

results in Table 4 show that the time consumption of the 

EFRC algorithm is lower than that of the eFCoC algorithm. 

This can be explained as follows: In Table 4, the PEMS-

SF dataset has a very high number of features (138672), 

Radar dataset has a rather large size (325834). Therefore, 

feature reduction is very significant for the EFRC 

algorithm, which significantly reduces data size. Reducing 

data size helps EFRC accelerate clustering faster than the 

eFCoC. 

General, the clustering results in Table 3 and Table 

4 are demonstrated that the EFRC  algorithm is more 

accurate than single algorithms KM, FCM, FCoC, 

IVFCoC, and eFCoC. 

V. CONCLUSION 

In this paper, an ensemble mathematical model and 

a clustering algorithm EFRC based on the EFRC model are 

proposed. The model of the clustering ensemble consists of 

ten basic components which are analyzed in detail to make 

EFRC more explicit than classic ensemble clustering 

models. Based on the EFRC model, the EFRC algorithm is 

formed to cluster the many-feature data. The EFRC model 

is an intelligent multi-objective clustering model that takes 

full advantage of clustering techniques to contribute two 

valuable rule sets R1 and R2. The EFRC algorithm 
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combines feature reduction algorithm, based on the divide-

and-conquer principle, and EFRC model's preeminent 

techniques to demonstrate potential in the many-feature 

data processing. The experimental results showed that the 

EFRC algorithm obtained better clustering accuracy and 

consumption time than the single clustering algorithms. 

Hyperspectral images have wide observability, high 

resolution, and feature numbers from hundreds to 

thousands. The hyperspectral image data plays an 

important in quantitative remote sensing, military, 

environmental management, mineral mining, biological 

and medical, precision agriculture applications. In the 

future, we will apply the EFRC algorithm to conduct 

further applications of classification, target detection, and 

change detection. 
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TIẾP CẬN MÔ HÌNH ĐỒNG THUẬN ĐỂ PHÂN 

CỤM DỮ LIỆU NHIỀU ĐẶC TRƯNG 

Tóm tắt: Đồng thuận là một mô hình học máy phổ biến 

dựa trên nguyên tắc chia để trị. Trong phân cụm dữ liệu, 

đồng thuận nhằm mục đích cải thiện hiệu suất về tốc độ xử 

lý và chất lượng phân cụm dữ liệu. Hầu hết các phương 

pháp đồng thuận hiện có đang đối mặt với những thách 

thức phức tạp như không chắc chắn, không rõ ràng và lấp 

chồng. Kỹ thuật phân cụm mờ gần đây đã được phát triển 

để xử lý dữ liệu nhiều đặc trưng, không đồng nhất, không 

chắc chắn và kích thước lớn. Trong bài báo này, chúng tôi 

đề xuất một mô hình đồng thuận phân cụm giảm đặc trưng 

(EFRC) sử dụng các kỹ thuật học máy tiên tiến. Mô hình 

EFRC bao gồm ba giai đoạn. Đầu tiên, dữ liệu được giảm 

bớt một số đặc trưng bằng phép chiếu ngẫu nhiên. Sau đó, 

dữ liệu được chia thành các tập con dựa trên mức độ chồng 

chéo và định lượng nhiễu. Các kỹ thuật phân cụm khác 

nhau được sử dụng để phân cụm các tập hợp con dữ liệu. 

Cuối cùng, kết quả của các mô-đun phân cụm được đồng 

thuận bằng cách sử dụng kỹ thuật phân loại để tạo ra kết 

quả phân cụm cuối cùng. Một vài thực nghiệm được thực 

hiện trên các bộ dữ liệu mẫu chuẩn. Kết quả thử nghiệm 

cho thấy hiệu suất vượt trội của mô hình EFRC so với các 

mô hình trước đó. 

Từ khóa: Phân cụm, phân loại, mô hình đồng thuận, 

giảm đặc trưng, nhiều đặc trưng, dữ liệu lớn. 
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