
Nguyễn Thanh Hà, Đặng Đình Quân, Trần Quang Anh

A NEURAL NETWORK METHOD FOR
SPAMASSASIN RULES GENERATION

Nguyễn Thanh Hà*, Đặng Đình Quân+, Trần Quang Anh#
* Sở Thông tin và Truyền thông Thành phố Hà Nội

+ Khoa Công nghệ thông tin – Trường Đại học Hà Nội
Học viện Công nghệ Bưu chính Viễn thông

1 Abstract: SpamAssassin has been widely used for

spam filtering on e-mail servers for its recognized real-

time performance and its ease of customization.

Unfortunately, SpamAssassin does not come with default

support for languages other than English. Although its

default rule set for English spam detection is frequently

updated, users usually have to train their own set of rules

to match the signature of their particular e-mail traffic.

There have been many proposed methods for the

generation of SpamAssassin rules in many languages

including but not limited to English [6], [9], [16], Chinese

[11], Thai [17] and Vietnamese [12]. The general

drawback of these methods is the use of hand-engineered

feature selection, which is a time-consuming process

because it involves a lot of data observation and analysis.

In this paper, we propose a multilayer neural network

model for generating SpamAssassin rules which selects

good features and optimize rule weights at the same time.

The weighted rule set obtained from training this neural

network can be applied directly in SpamAssassin. The

experiments showed that our network is fast to train and

the resulted rule set has comparable detection rates to

previous rule generation methods.

Keywords: neural network, rules generation, spam

filtering, SpamAssassin.

I. INTRODUCTION

Roughly five decades since its first implementation for

ARPANET in 1971, electronic mail (e-mail) has involved

into the most important form of online communication.

Nowadays, its applications include but not limited to online

identity verification, personal and business

communications. According to Radicati’s report [20], in

2018, there were 281.1 million e-mails being sent daily and

the number of e-mail users reached 3.823 billion. Spam

(unsolicited bulk e-mail) accounts for 55% of all e-mail

messages as reported by Symantec in 2019 [21]. This

volume of spam represents a serious problem which is not

only annoying but also costly to e-mail users.

The two most popular approaches to spam filtering are

rule-based (or signature-based) filtering and machine

learning. Although spam filters based on machine learning

proved superior efficiency, better detection rates often

Correspondence: Nguyễn Thanh Hà
Email: thanhha140589@gmail.com

Manuscript communication: received: 10/05/2020, revised:

11/25/2020, accepted: 12/12/2020.

come with the cost of more computational power.

Meanwhile, rule-based filters have been widely used for

their low complexity and non-intrusive nature [18]. Among

rule-based techniques, SpamAssassin1 remains the most

utilized one on the e-mail server side. Because of its fast

detection engine and sophisticated rule formats,

SpamAssassin is able to capture a wide range of e-mail

features in real-time applications of spam filtering. Since

SpamAssassin’s capability depends on its rule set,

researchers have proposed hybrid methods which make use

of machine learning elements to generate rules from data

[6], [11], [16].

Rule generation techniques for SpamAssassin follow a

similar approach to traditional machine learning methods

which consists of two major steps: feature

selection/representation and model optimization. Once a

presumably good set of features are chosen and vectorized,

the model is trained only on that particular feature set. It is

agreed [5] that the effectiveness of learning-based methods

for spam filtering depends greatly on the feature selection

phase. In other words, these rule generation techniques rely

heavily on good rule (feature) selection to be effective.

Unfortunately, this step is usually done separately and has

no connection to the later step of training the rule set on

data. The performance of the trained rule set is restricted by

the quality of the feature set, which may not be the most

effective one. Furthermore, the number of features also

affects the filter’s performance. Generally, using more

features results in better evaluation results in exchange for

longer execution time. On the other hand, a spam filter

tends to achieve better generalization (cross-corpora

performance) with less features [18].

In recent years, neural networks have become easier to

train thanks to new optimization methods and new

activation functions. Neural networks are generally trained

with a gradient-based method such as stochastic gradient

descent (SGD) which relies on the calculation of partial

derivatives. With the introduction of the back-propagation

algorithm [1], it became possible to effectively optimize the

weights of connections associated to hidden layers in multi-

layered neural networks with linear transfer functions and

non-linear activation functions. The detection mechanism

A NEURAL NETWORK METHOD FOR SPAMASSASIN RULES GENERATION

of SpamAssassin is based on weighted keyword rules,

which is similar to the perceptron model (a single-layer

neural network). What its current rule optimization tool

does is actually fitting a perceptron model on e-mail data.

The model is built from a SpamAssassin rule set where

each node acts as a rule in the set. In other words, each node

in the perceptron model carries the rule’s weight as its own

weight.

In this paper, we propose a novel method that makes

use of a multilayer neural network model for SpamAssassin

rules generation. In this method, individual features are

weighted and good features can be empirically selected. To

realize these goals, we apply a customized training process

on a neural network in which the former layers play the

feature selection role and the last layer mimics the detection

mechanism of SpamAssassin.

The rest of this paper is organized as follows:

- Section II reviews published works on rules

generation techniques for SpamAssassin.

- Section III discusses the detailed steps of the

proposed method.

- Section IV describes our experiments, the

dataset and experiment results.

- Section V draws a conclusion of this research’s

outcome and discusses research direction.

II. RELATED WORKS

SpamAssassin is a popular open-source spam filter

which makes use of multiple mechanisms for detecting

spam messages. One of its detection mechanisms is based

on weighted regular expression rules. These rules match

against the header or body of e-mail. When an e-mail is

being processed, a certain number of rules in the rule set

are triggered by the content of that e-mail. The weights of

those triggered rules are summed up as a single score which

is the spam score of the e-mail message. If the spam score

exceeds a pre-defined threshold value 𝑇, the message is

then marked as spam. SpamAssassin allows the creation of

customized rules and provides its users with a rule learning

tool. This tool uses the SGD algorithm to train a perceptron

model on labeled e-mail training data. The reason for this

choice is that SpamAssassin’s detection mechanism is

similar to a perceptron network where node weights

represent rule scores and node activation is equivalent to

rule match. One can either set the value of 𝑇 before learning

SpamAssassin rules so as to let the learning algorithm

adjust rule scores to suit the threshold 𝑇, or generate

SpamAssassin rules first and later set the value of 𝑇 to suit

the threshold used by the learning algorithm.

Many methods have been proposed to improve

SpamAssassin’s spam detection using data. In [6], different

spam filtering techniques dated until 2003 were integrated

into SpamAssassin and compared. Different feature

detectors (e.g. SpamAssassin, Information Gain,

clustering) and different machine learning algorithms (e.g.

Naïve Bayes and variants, Perceptron by gradient descent,

ID3) were used to generate SpamAssassin rules.

Experiments were conducted on several datasets: author’s

e-mails (15,000 e-mails), X Window System developer's

Xpert mailing list + Annexia spam archive (15,000 e-mails,

50% spam, 50% ham), Lingspam, SpamAssassin. The

paper reported best results from the SpamAssassin

combined with clustering feature detector. However, the

authors also stated that more tuning work and better corpus

were needed to reproduce other papers’ results more

accurately.

In [9], the author described his method to adjust the

scores in a rule set containing all default SpamAssassin

keyword rules and a number of Bayes rules. These new

rules, which are activated when the Bayesian probability of

an e-mail falls within a specific range, were added to the

default rule set. For example, “BAYES_00 matches when

bayes spam probability is between 0% and 5% etc” [9]. In

order to obtain the best detection rate, a generic algorithm

was used to find the scores for these pseudo-rules and other

rules in the set. Rule score training was based on a self-built

dataset of 1,176 hams and 1,611 spams. This method was

evaluated and compared with 4 other spam detection

methods on a testing dataset (also collected by the author)

of 109 hams and 1,011 spams. These compared methods

are Multi-Response Linear Regression (MLR), Logistic

Regression [2], SVM trained by the SMO algorithm [15]

and a variation of the C4.5 decision tree algorithm called

J48 [3]. Results showed that the proposed method

performed significantly better than SMO, which has the

most stable performance across different testing scenarios

among the 4 compared methods, in terms of ham error

rates. This method also achieved the highest Total Cost

Ratio (TCR) in all experimented methods in [9]. TCR is a

measure of how costly the method is compared to the

manual remove of spam messages. The higher the value of

TCR, the better.

The authors of [8] argued that the rule-based nature of

SpamAssassin is not suitable for spam detection since spam

e-mails are always changing. In order to verify this

argument, the authors compared the default SpamAssassin

rule set against a CBDF filter (a statistical method proposed

by Kilgarriff et. al. in [4]). With the advantage of fitting to

the training dataset, it is not surprising to see a significantly

higher performance of CBDF compared to SpamAssassin.

In addition, there was also the fact that personal e-mails

were used for the experiments. SpamAssassin’s rule set

was manually engineered and rule scores optimized on a

corpus collected by the SpamAssassin Project. The bundled

rule set is intended for the use of general English spam

detection. It is not supposed to perform well on a

personalized context. The 3,834 personal messages (of

which 205 are spam e-mails) that were used in [8] are not

representative enough to make the experiments convincing.

That being said, it can be implied from these experiments

that the default rule set of SpamAssassin’s is not suitable in

personalized settings.

Another effort to improve SpamAssassin’s

performance was reported in [7]. The authors proposed the

use of word stemming – a widely used preprocessing

technique in information retrieval – as a way to combat

spammers’ attempts to fool spam filters by using different

word forms that are visually similar to the original word.

Nguyễn Thanh Hà, Đặng Đình Quân, Trần Quang Anh

Examples of such words are “V*agr@”, “V.i-a.g*r.a”, etc.

The stemming algorithm maps different representations of

the same word to a unique hash value. These hashes (also

called stems) are then used in the operations of rule-based

or statistical filters. It means that different forms of the

same word are treated as appearances of a single word in a

document. As a result, spammer’s attempts to modify a

message will only result in the same one. The experiment

in [10] indicates that the application of the technique has

greater effects in improving filtering performance on more

recent messages (collected in 2004) than on older ones

(collected in 2003).

A framework for generating statistical SpamAssassin

rules for Chinese was presented in [11], which employed

different feature detection methods. In this method, only

spam-related features are utilized for spam detection. The

authors of [11] showed the effects of different hyper

parameters such as the number of rules and the average

pattern size. A previously introduced word segmentation

method was used in [11] to control the average size of

tokenized patterns. The authors used an SGD method [10]

for training SpamAssassin rule scores which are treated as

neuron weights in a perceptron network. From

experimenting on a large self-built corpus of 194,088 spam

and 305,140 ham, the author reported best performance for

500 rules with an average pattern size of 3 characters (6

bytes) and Conditional Probabilities as feature detector.

In 2009, the application of another technique to

improve SpamAssassin was proposed [16]. The authors

combined active learning (AL) with semi-supervised

learning (SSL) in order to not only increase

SpamAssassin’s detection rates but also greatly reduce the

work needed to label training data – making the method

more practical to the general users. This method is

applicable when there is a large dataset in which only a

small portion are labelled. Semi-supervised learning has

been used to automatically assign labels to the rest of a

dataset provided that a part of it was manually labelled.

Generally, a classifier is trained with the labelled data

before being used to label a certain number of unlabeled

ones. Those newly labelled samples with high confidence

are then added to the training set to re-train the classifier.

The authors of [16] believe that the samples which return

high confidence actually contain very little new knowledge

because they are similar to the labelled ones from the

training data. Instead, the ones which the classifier is

uncertain about have a higher chance of holding beneficial

information. Based on this assumption, [16] proposed to

leave the labeling of those suspicious unlabeled messages

to e-mail users (active learning). However, since the users

only agreed to manually label a limited number of

messages, clustering was employed so that only the

centroid needs to be manually labelled and the label

propagates the entire cluster. It is necessary to note that the

propagation of label only applies to ‘pure’ clusters – those

whose messages receive the same label from the classifier.

At this point, a number of newly labelled messages are

added to the training set and the classifier is re-trained and

the process can be repeated. Experiments on the TREC07p

dataset, which contains 50,199 spams and 25,220 hams,

shows that the method performs significantly better than

the built-in auto-learning (SSL) feature of SpamAssassin

(the experimented version is 3.2.5). Different setups are

also compared to indicate the effects of the number of

queries to the user, the number of clusters in the clustering

step and the rate of label propagation. Increasing the

number of user queries results in better true positive rates

and lower false positive rates while changing the number

of clusters does not modify the performance significantly.

Additionally, higher rates of propagation often reduce

performance rather than improve it.

The authors of [17] aimed to modify the statistical

SpamAssassin rules approach in [11] for the Thai language.

A hybrid word segmentation method for Thai called

CUWS was used for input tokenization. The two feature

detectors that has the best performance for Chinese –

Conditional Probabilities and Bayes’ Theorem – were

adapted from [11]. The dataset used for evaluation of this

model contains only 1,000 spams and 1,000 hams, all of

them are in Thai language and are manually selected. The

paper concluded that Thai rules increased SpamAssassin’s

overall detection confidence (with higher, more

distinguished scores between spam and ham). It also

reported the performance of the generated rule set where

spam recalls are from 76.8% to 86.4% and ham errors are

from 0% to 5% across 10-fold cross-validation attempts.

Whether the performance could be increased by increasing

the size of training data was not reported.

Another method to create SpamAssassin rules that

targeted the Vietnamese language was reported in [19].

Features are extracted from the subject and body of both

spam and ham e-mails in order to reduce the rate of false

positives (ham misclassified as spam) which are more

severe than false negatives. Moreover, a hybrid

evolutionary algorithm (Hybrid Particle Swarm

Optimization with Wavelet Mutation [14]) was used to

optimize rule scores for its ability to better avoid overfitting

than the previously used SGD algorithm. Experiment

showed that the portion of ham rules in a rule set should be

between 25% and 50% for best performance. While [19]

found that the combination of spam and ham features

worked best for Vietnamese, [11] and [17] found that only

spam-liked patterns achieved higher performance in their

languages respectively.

III. GENERATING SPAMASSASSIN RULES

BASED ON NEURAL NETWORK

The reviewed methods above tried to improve

SpamAssassin by focusing on different aspects in the spam

detection process, namely the pre-processing of e-mail

content [7], feature selection [11], [19], employing semi-

supervised learning on e-mail data [16] and introduction of

new rules and assigning rule scores [9]. In this paper, the

authors aim to improve SpamAssassin by proposing

another method for extraction of useful rules from e-mail

data and optimization of those rules’ scores. The method is

based on training a neural network using a gradient-based

algorithm. However, the actual goal is not the neural

network itself, but rather a particular selection of weights

from it.

A NEURAL NETWORK METHOD FOR SPAMASSASIN RULES GENERATION

A. Data preprocessing & representation

From the training set consisting of spam and ham, we

use vnTokenizer – a Vietnamese word segmentation tool

[13] – to separate the words from the messages’ body and

subject. Then, we create a set of distinct words

(vocabulary) called Vs from the subjects. We call the

similar set from the message bodies Vb. In the proposed

method, removing stop words are not needed because

feature selection is done during neural network training and

unimportant words are excluded during the process.

Each e-mail message is treated as a bag of words and

represented by a one-hot encoding vector to simulate

SpamAssassin’s detection mechanism. Each element of

this vector is a word feature, with value 1 meaning the word

is present in the e-mail message and value 0 meaning the

opposite. In a one-hot encoding scheme for text, the

frequency of a word is not recorded, thus the value of a

word feature will be 1 even if the word appears multiple

times. The fact that one feature is needed for every word in

the dataset (a.k.a. for every word in the vocabulary) makes

the size of the input vector equal to the size of the

vocabulary. In our method, subject and body features are

distinguished, so the encoded vector 𝑥 of an e-mail message

contains two separate segments for subject words and body

words. Therefore, its length is: |𝑥| = |Vs| + |Vb|.

B. The neural network model

The neural network that we use to learn SpamAssassin

rules from a dataset consists of two main components. The

first component is called the feature selector and the other

one is called the predictor. The network and the training

algorithm are designed so that selecting good features and

learning the correct weights for those features are done in

one process.

Fig. 1. The neural network structure with feature
selector and predictor parts.

The feature selector part consists of one layer of

neurons which are activated by function 𝑓 defined in (1).

An input e-mail message is fed into the feature selector

layer in the form of a binary vector x which was described

in a previous section. The input vector 𝑥 and the weight set

𝜔 have the same size, which means each element in the

input vector can be associated with one weight from 𝜔. The

role of 𝜔 is to hold the importance of each word, which in

turn decides whether the word is selected as a feature. The

approach is to first exclude all features and gradually

activate significant features – the ones whose weights

increase to a certain threshold after a certain amount of

training. To achieve this effect, we introduce a global hyper

parameter 𝜀 and a weight 𝜔𝑖 associated to each element 𝑥𝑖
of the input vector. At each neuron of the feature selector

part, the product of the input 𝑥𝑖 and 𝑓(𝜔𝑖) is taken. When

the output of 𝑓 is 0, the feature represented by 𝑥𝑖 is excluded

from the forward pass but still included in the backward

pass of the training process.

𝑓(𝑥) = {
1, 𝑥 > 𝜀
0, 𝑥 ≤ 𝜀

 (1)

In other words, it will have no effect on the output of

the network but its weight 𝜔𝑖 will still be updated by the

training algorithm and it still has a chance to be selected

later. The value of 𝜀 should control the number of rules after

training since it directly affects rule selection.

The remaining part of the network, the predictor part,

is a perceptron with a sigmoid activation function, without

bias. This predictor layer is also the last layer of the

network. It takes the output of the previous feature selector

layer as its input and outputs a scalar value. Let the output

of the feature selector layer be vector h and the output of

this predictor layer be a scalar 𝑘. The output of the network

is calculated using the formula (2).

This predictor part simulates the default detection

mechanism of SpamAssassin where the weights in the set

𝑤 act as rule scores. These weights are initialized as

random non-negative numbers and will stay non-negative

throughout the training process.

𝑘 = 𝜎(∑ℎ𝑖

|ℎ|

𝑖=1

∙ 𝑤𝑖) (2)

Being output by the sigmoid function, 𝑘 is a real

number within the range (0, 1). The prediction result can be

obtained by mapping 𝑘 into into a discrete value of either 0

(ham) or 1 (spam) respectively. The mapping function

depends on the specific problem where the network is

applied. In general, we define a threshold value 𝑇 that

divides the range (0, 1). If 𝑘 is greater or equal to 𝑇, a

positive prediction is concluded and vice versa. 𝑇 should be

the middle value between the lowest and highest bounds of

𝑘 (which are not always 0 and 1, see section III. C. for

explanation).

C. Training the neural network

We train our neural network using the gradient descent

method with backpropagation. The first step is to generate

non-negative initial weights for two weight sets 𝜔 and 𝑤.

It is done using random numbers in a folded normal

distribution (taking the absolute value of Gaussian random

numbers). Each initial weight is normalized by dividing it

with its layer’s size. The gradient descent method can be

summarized as follows. Each sample in the training set is

labeled with a target value (desired outcome). For each

sample, calculate the output using current weights and get

the different from output and target as the output’s error.

Calculate the partial derivative of the error with respect to

each weight – which is the gradient of the weight. With

Nguyễn Thanh Hà, Đặng Đình Quân, Trần Quang Anh

gradients, update the weights in a manner which reduces

the error. A learning_rate value may be used to control the

speed at which the weights change. Each loop through all

the samples in the training set is called an epoch. This

training process is repeated for many epochs until a

desirable total averaged error (or any chosen evaluation

measure) is reached.

We have made some changes to the normal gradient

descent training procedure to suit our network. Firstly, each

weight 𝜔𝑖 in the set 𝜔 is updated as long as 𝑥𝑖 is 1,

regardless of whether the corresponding feature is selected

by function 𝑓 or not. This can be done by assuming that

function 𝑓 always returns 1 when calculating the partial

derivative of 𝜔𝑖. In opposite, the output of function 𝑓 will

decide if a weight 𝑤𝑖 in the set 𝑤 is updated or not. In other

words, all weights in 𝜔 which is associated with input 𝑥𝑖
value of 1 are updated whereas only the weights in 𝑤 which

subjects to 𝑓(𝜔𝑖) = 1 (a.k.a. selected features) may be

updated. Secondly, since sigmoid activation is used and

rule weights are non-negative, the target value 𝑦0 for ham

samples should be 0.5 instead of 0. This is because the

weighted sum of activated features cannot be lower than 0

and the sigmoid function outputs 0.5 for input 0. If the

target 𝑦0 is set to 0 for ham samples, the output error could

not be reduced pass 0.5. This issue may lead to unnecessary

reduction of rule weights when a ham sample is fed to the

network during training.

Table I. D0 dataset statistics

User No. of messages Ham Spam

1

All 3,854 2,998 856

EN 1,645 1,031 614

VI 2,209 1,967 242

2

All 4,144 1,858 2,286

EN 622 25 597

VI 3,522 1,833 1,689

3

All 5,478 2,191 3,287

EN 3,845 1,301 2,544

VI 1,633 890 743

Total 13,476 7,047 6,429

D. Generating a weighted rule set

The predictor part of the network structure is the

representation of SpamAssassin’s rule-based detection.

Each neuron of the predictor layer has a weight can be

associated with a word. The neurons which are selected by

the activation function 𝑓 of the previous layer are

equivalent to SpamAssassin rules. A SpamAssassin rule set

can then be generated by extracting information from the

neural network model. In our experiments, we use

SpamAssassin to test the resulting rule sets.

IV. EXPERIMENTS

A. Datasets

Both the proposed method and the method in [19]

utilized a word segmentation method [13] which do not

work well with content in languages other than

Vietnamese. If the target rule set is expected to handle

emails in multiple languages, then it is required to have a

method to reliably detect content language – which is not

within the established scope of this research. English,

however, is the language which can be tokenized by

splitting by white-spaces and punctuations. Therefore, it is

feasible to also perform tests on a labeled English dataset.

Since a public spam e-mail corpus in Vietnamese cannot be

found, we have collected a Vietnamese e-mail dataset to

experiment with the proposed method. The raw dataset,

hereafter referred as D0, consists of 17,869 e-mails from 3

users who regularly use e-mail for work. The messages in

D0 are written in English and Vietnamese. After removing

e-mails with empty body or e-mails whose content is

mainly composed of images, there are 13,476 e-mails left.

Fig. 2. recall and precision values for different
threshold values for the method in [19]

E-mail owners are asked to label their e-mails. For each

message, they have to complete two labels: language and

spam. The language label takes two values: “en” and “vi”.

The spam label indicates that a message is spam (true) or

ham (false). The labelers are asked to label their e-mails

with this rule: if both the subject and body of the message

has no valuable information, mark it spam, otherwise, mark

it ham.

In our dataset, we also extracted three more features

which are: the number of attachments, the number of

hyperlinks and the number of tags. We believe that

these features can be useful in further research. Table 1

summarizes the statistics of our D0 dataset.

The following experiments only utilize Vietnamese e-

mails and textual features which are subject and body in the

dataset. We extracted only Vietnamese e-mails from

dataset D0. As the result, we obtained a set of 7,364

messages total, of which there are 4,690 ham and 2,674

spam. We call this the D1 dataset in our experiments.

Table II. Cross-validated F1 score and precision
measures of two methods on dataset D1

Attempt #
Method in [19] Proposed method

Precision F1 Precision F1

1 0.9628495 0.9513718 0.9674080 0.9553200

2 0.9563476 0.9236125 0.9650735 0.9733037

3 0.9592226 0.9501699 0.9630713 0.9739323

4 0.9505882 0.9280245 0.9380793 0.9420964

A NEURAL NETWORK METHOD FOR SPAMASSASIN RULES GENERATION

5 0.9656238 0.9500285 0.9750567 0.9699248

6 0.9551777 0.9395667 0.9252269 0.9390311

7 0.9637827 0.9284745 0.9755455 0.9726182

8 0.9616317 0.9246602 0.9667049 0.9555514

9 0.9510974 0.9372036 0.9685275 0.9676212

10 0.9645881 0.9506829 0.9420821 0.9514994

Average 0.9590909 0.9383795 0.9586776 0.9600898

In addition, we also use the TREC07 public spam

corpus for evaluating the performance of the proposed

method for English e-mails. With this dataset, it is also

possible to compare our results with other English-based

SpamAssassin rules generation methods. The TREC 2007

corpus [12] includes e-mail messages collected from an e-

mail server in a time period of roughly 1 month. It is

carefully analyzed and labeled by spam specialists at TREC

and it has been widely used for spam filter benchmarking.

The corpus contains 75,419 e-mail messages, 50,199 of

which are marked as spam and the remaining 25,220 are

legitimate messages. Both the message content and headers

are provided. More datasets can be obtained from [12]. In

our experiments, the TREC07 dataset is hereafter called the

D2 set.

B. k-fold cross validation

In our experiments, k-fold cross validation (k = 10) is

applied to increase confidence on the results. A dataset is

first shuffled before it is divided into 10 equal parts which

have roughly the same spam-to-ham ratio. The training and

testing were repeated 10 times where each part of the

dataset is selected as the test set while the rest are combined

as the train set. This ensures that every part of the dataset

contributes to both the training and testing results of a

particular method. The results reported in this paper are the

average values obtained from performing k-fold cross

validation.

C. Experiment 1

1) Summary of previous method

Among previous studies about generating

SpamAssassin rules, we have found one study [19] that

targeted the Vietnamese language. The method in [19] can

be summarized as follows:

Fig. 3. recall and precision values for different

threshold values for the proposed method.

Firstly, words are extracted from e-mail subject and

body using the method in [13]. Then, a number of highest-

quality words from spam e-mails and from ham e-mails are

selected based on Bayes’ probability theorem. Each

selected word is considered a feature as well as a rule, and

a SpamAssassin rule set can be generated from the set of

these words/features/rules. This feature selection step to get

the set of keyword rules is done separately from the next

step of optimizing rule scores. Without any connection

from the set of selected rules to the prediction result of the

rule set, the quality of selected rules could not be verified.

Thus, this feature selection step is a blind process. Next, an

evolutionary optimization algorithm called HPSOWM was

used to optimize rule scores on a labeled training dataset of

Vietnamese e-mail messages.

Fig. 4. Average recall, precision and F1 values of
three different method configurations on the

English dataset D2.

In [19], various numbers of selected words as well as

various ratios between selected spam words and ham words

were tested.

2) Experiment setup

In this experiment, we reproduced the result of [19] and

compared the performance of our proposed method on

dataset D1. Two methods were used to independently build

two separate SpamAssassin rule sets. For our previous

method [19], a SpamAssassin detection threshold value 𝑇

= 0.0 was used for both training and testing since the

method also makes use of ham (negatively weighted) rules

and 𝜎(0) = 0.5 (the center point between the target values

0.0 and 1.0). Moreover, because the target number of rules

has to be set manually, the reported best values of 500 spam

rules and 500 ham rules were selected for the experiment.

For our proposed method, a threshold value 𝑇 = 1.1 was

used since 0.75 is the center point between the target values

(0.5 and 1.0) and the network output 𝜎(1.1) ≈ 0.75. We

determined the threshold value in advance in order to let

the training algorithm fit the rule weights according to the

threshold. By doing so, the selected threshold value should

be the optimized one. The experiment is run in a k-fold

cross validation scheme, explained earlier in this paper.

precision =
tp

tp + fp
 (3)

To reliably measure the performance of the generated

rule sets, we used F1 score (5) since it is a balanced

combination of the two popular measures: recall and

precision. F1 score does not suffer from the problem in

Nguyễn Thanh Hà, Đặng Đình Quân, Trần Quang Anh

classification where unreliable results come from the fact

that samples are not distributed evenly between classes.

recall =
tp

tp + fn
 (4)

In the spam detection problem, the number of false

alarms often receives the most attention because it is costly

to discard a legitimate e-mail message. For this reason, we

also use precision (3) to report the result of this experiment.

precision is calculated from the number of true positives

(correct prediction of spam, tp) and false positives (ham

misclassified as spam, fp) while recall (4) is calculated

from true positives and false negatives (spam misclassified

as ham, fn). Spam messages are often stored in a separate

folder in the user’s inbox, and are usually deleted

automatically after a while. By the time of this writing,

Gmail (mail.google.com) automatically deletes spam

messages which are older than 30 days. It is against a user’s

benefits when a ham message is detected as spam and being

deleted without the user knowing. A low precision measure

indicates that this situation happens more frequently.

F1 = 2 ×
recall × precision

recall + precision
 (5)

Since a statistical classifier is not guaranteed to achieve

100% accuracy (the amount of correct predictions over all

predictions), recall is often sacrificed to gain better

precision. It can be done by reducing the classifier’s

sensitivity, making it harder for the classifier to generative

positive predictions. Reducing sensitivity lowers recall

while raising precision and vice versa. In SpamAssassin,

the filter’s sensitivity is governed by the previously

mentioned threshold value 𝑇. Sensitivity and threshold are

opposite terms: the higher the threshold, the lower the

sensitivity.

In practice, e-mail users are often concerned with the

trade-off between recall and precision. High recall frees the

user’s inbox of spam but also leads to more legitimate

messages being moved to the junk mail folder. Meanwhile,

high precision means less ham are mistakenly marked as

spam but also means less spam are detected, leaving more

spam messages in the user’s inbox. In this experiment, we

also report recall and precision at different threshold values

to demonstrate the concerned trade-off (see Fig. 2 and Fig.

3).

3) Result

It can be observed from Table 2 that the new method

achieved comparable precision as the one reported in [19].

However, the method in [19] has a significantly lower

recall rating, as can be inferred from a lower F1 score. It can

be drawn from these figures that the proposed method can

filter much more spam messages while having a similar

capacity to prevent legitimate messages from being sent to

the junk mail box.

Table III. Results of three methods on dataset D2

Default SA Re-trained SA Proposed

Prec. F1 Prec. F1 Prec. F1

1 0.91433 0.90893 0.96914 0.94703 0.98190 0.96610

2 0.91548 0.92585 0.97302 0.95304 0.97952 0.97570

3 0.92336 0.90660 0.97623 0.94955 0.98637 0.97605

4 0.93057 0.90933 0.97410 0.96272 0.97916 0.97159

5 0.93701 0.92164 0.97390 0.95862 0.98439 0.97589

6 0.94760 0.92726 0.97558 0.95281 0.98728 0.98044

7 0.92081 0.90485 0.97009 0.95318 0.98466 0.97804

8 0.94088 0.93806 0.97098 0.95175 0.97866 0.96892

9 0.96800 0.92173 0.97469 0.95488 0.97580 0.96973

10 0.93139 0.92673 0.96946 0.95236 0.98055 0.97238

Avg. 0.93294 0.91910 0.97272 0.95359 0.98183 0.97348

k-fold cross-validated precision (Prec.) and F1 score of our proposed

method, default SpamAssassin rule set and re-trained default

SpamAssassin rule set on English dataset D2

D. Experiment 2

We carried out this experiment to see how effective this

new method is for English spam detection compared to the

original method that generated SpamAssassin’s default rule

sets. For this goal, the dataset D2, which is a public spam

corpus in English, was used for this experiment. The

default, unmodified rule set that comes with SpamAssassin

3.4.2 is used as a baseline for the comparison. Although this

rule set is supposed to effectively detect spam for English

e-mail messages in general, it was not originally trained on

D2. Therefore, we also re-trained its rule weights on D2 and

included the adjusted rule set in the comparison. We use

the two metrics in the previous experiment which are F1

score and precision for presenting k-fold cross-validated

results.

The default SpamAssassin rule set achieved a relatively

high performance despite not being trained on the same

dataset. After re-training of rule scores, the results

increased significantly, especially in the precision measure.

Among the three configurations of this experiment, our

proposed method outperforms the other two methods with

the highest values in both precision and F1 metrics. Fig. 4

shows the relation between three performance measures

across the experimented rule sets.

V. CONCLUSION

SpamAssassin rules were previously generated using

the traditional approach which involves hand-engineered

feature selection [6], [11], [17], [19]. In this approach, rule

selection and score training are separate processes where

the former one decides the outcome of the latter. However,

this is a one-way influence in which score training cannot

provide any feedback to help improve the quality of rule

selection. In other words, feature selection is not optimized

because there is not a cost function to optimize on.

Contrary to that approach, our proposed method combines

the two processes into a single neural network so that rule

selection can also be optimized based on the final cost

function (the training error). The experiments showed that

our presented method is able to achieve superior

performance to previous techniques on both English and

Vietnamese datasets. With this model as a general

framework, modifications can be made to parts of the

neural network to achieve desirable effects. For example,

the activation function 𝑓 can be improved to include more

A NEURAL NETWORK METHOD FOR SPAMASSASIN RULES GENERATION

mechanisms to improve its ability to measure a feature’s

quality.

REFERENCES

[1] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).
Learning representations by back-propagating errors.
In Nature, 323(6088), 533.

[2] Le Cessie, S., & Van Houwelingen, J. C. (1992). Ridge
estimators in logistic regression. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 41(1), 191-
201.

[3] Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann.

[4] Kilgarriff, A., & Salkie, R. (1996). Corpus similarity and
homogeneity via word frequency. In Proceedings of
Euralex (Vol. 96).

[5] Graham, P. (2003). Better bayesian filtering. In Proceedings
of the 2003 spam conference (Vol. 11, pp. 15-17).
Cambridge, MA.

[6] Massey, B., Thomure, M., Budrevich, R., & Long, S. (2003,
June). Learning Spam: Simple Techniques For Freely-
Available Software. In USENIX Annual Technical
Conference, FREENIX Track (pp. 63-76).

[7] Ahmed, S., & Mithun, F. (2004). Word Stemming to
Enhance Spam Filtering. In In In Proceedings of
Conference on Email and Anti-Spam (CEAS).

[8] O’Brien, C., & Vogel, C. (2004, January). Comparing
SpamAssassin with CBDF email filtering. In Proceedings
of the 7th Annual CLUK Research Colloquium (pp. 6-7).

[9] Seewald, A. K. (2004). Combining Bayesian and Rule Score
Learning: Automated Tuning for SpamAssassin. Intelligent
Data Analysis. Technical report, TR-2004-11 Austrian
Research Institute for Artificial Intelligence, Vienna,
Austria.

[10] Stern, H. (2004). Fast SpamAssassin score learning tool
[online]. Available at
https://svn.apache.org/repos/asf/spamassassin/trunk/masse
s/README.perceptron

[11] Tran, Q. A., Duan, H., & Li, X. (2006). Real-time statistical
rules for spam detection. IJCSNS International Journal of
Computer Science and Network Security, 6(2B), 178-184.

[12] Cormack, G. V., & Lynam, T. R. (2007). TREC 2007 Public
Corpus. Retrieved 2020, from
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/about.ht
ml.

[13] Huyen, N. T. M., Roussanaly, A., & Vinh, H. T. (2008,
March). A hybrid approach to word segmentation of
Vietnamese texts. In International Conference on Language
and Automata Theory and Applications (pp. 240-249).
Springer, Berlin, Heidelberg.

[14] Ling, S. H., Iu, H. H., Chan, K. Y., Lam, H. K., Yeung, B.
C., & Leung, F. H. (2008). Hybrid particle swarm
optimization with wavelet mutation and its industrial
applications. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 38(3), 743-763.

[15] Zeng, Z. Q., Yu, H. B., Xu, H. R., Xie, Y. Q., & Gao, J.
(2008, November). Fast training support vector machines
using parallel sequential minimal optimization. In 2008 3rd
international conference on intelligent system and
knowledge engineering (Vol. 1, pp. 997-1001). IEEE.

[16] Xu, J. M., Fumera, G., Roli, F., & Zhou, Z. H. (2009, July).
Training spamassassin with active semi-supervised
learning. In Proceedings of the 6th Conference on Email
and Anti-Spam (CEAS’09) (pp. 1-8).

[17] Songkhla, C. N., & Piromsopa, K. (2010, January).
Statistical rules for thai spam detection. In 2010 Second
International Conference on Future Networks (pp. 238-
242). IEEE.

[18] Caruana, G., & Li, M. (2008). A survey of emerging
approaches to spam filtering. ACM Computing Surveys
(CSUR), 44(2), 1-27.

[19] Dinh, Q. D., Tran, Q. A., & Jiang, F. (2014, December).
Automated generation of ham rules for Vietnamese spam

filtering. In the 2014 Seventh IEEE Symposium on
Computational Intelligence for Security and Defense
Applications (CISDA) (pp. 1-5). IEEE.

[20] Team, R. (2018). Email Statistics Report, 2018-2022. The
Radicati Group.

[21] Symantec, C. (2019, February). Internet Security Threat
Report 2019. Mountain View, CA, USA.

PHƯƠNG PHÁP SINH LUẬT SPAMASSASSIN

DỰA TRÊN MẠNG NƠ-RON

Tóm tắt: SpamAssassin đã và đang được ứng dụng rộng

rãi để lọc thư rác trên các máy chủ thư điện tử bởi vì bộ

công cụ này có khả năng xử lý thời gian thực tốt và có thể

dễ dàng tùy chỉnh. Tuy nhiên, SpamAssassin chỉ tích hợp

sẵn hỗ trợ dành cho tiếng Anh. Mặc dù tập luật mặc định

của SpamAssassin dành cho tiếng Anh được cập nhật

thường xuyên, người sử dụng thường phải tự huấn luyện

tập luật phù hợp với dữ liệu thư điện tử của họ. Đã có nhiều

phương pháp được đề xuất cho bài toán sinh luật

SpamAssassin cho nhiều ngôn ngữ như tiếng Anh [6], [9],

[16], tiếng Trung [11], tiếng Thái [17] và tiếng Việt [12].

Hạn chế chung của những phương pháp này nằm ở khâu

lựa chọn đặc trưng được thực hiện trực tiếp bởi chuyên gia.

Công việc này đòi hỏi nhiều thời gian bởi vì dữ liệu cần

được quan sát và phân tích tỉ mỉ. Trong bài báo này, các

tác giả đề xuất một mô hình mạng nơ-ron nhiều lớp để sinh

luật, tối ưu hóa trọng số luật và đồng thời tự động chọn ra

tập thuộc tính tốt. Tập luật có trọng số thu được từ kết quả

huấn luyện mô hình có thể được áp dụng trực tiếp trên phần

mềm lọc thư rác SpamAssassin. Các thí nghiệm cho thấy

mô hình mạng nơ-ron tốn ít thời gian để huấn luyện và tập

luật được sinh ra có hiệu năng tốt so với những phương

pháp sinh luật trước đó.

Từ khóa: mạng nơ-ron, sinh luật, lọc thư rác,

SpamAssassin

Nguyễn Thanh Hà, hiện

đang công tác tại Sở thông tin
và Truyền thông Hà Nội. Đang
làm nghiên cứu sinh ngành Hệ
thống thông tin tại Học viện
Công nghệ Bưu chính viễn
thông.

Lĩnh vực nghiên cứu và chuyên
môn bao gồm: AntiSpam, Công
nghệ phần mềm và Hệ thống
thông tin.

Email:
thanhha140589@gmail.com

Đặng Đình Quân, là giảng
viên tại khoa Công nghệ thông
tin – Trường Đại học Hà Nội.

Lĩnh vực nghiên cứu và chuyên
môn bao gồm: AntiSpam, Học
máy và Giải thuật tiến hóa.

Email: quandd@hanu.edu.vn

