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1 Abstract:  SpamAssassin has been widely used for 

spam filtering on e-mail servers for its recognized real-

time performance and its ease of customization. 

Unfortunately, SpamAssassin does not come with default 

support for languages other than English. Although its 

default rule set for English spam detection is frequently 

updated, users usually have to train their own set of rules 

to match the signature of their particular e-mail traffic. 

There have been many proposed methods for the 

generation of SpamAssassin rules in many languages 

including but not limited to English [6], [9], [16], Chinese 

[11], Thai [17] and Vietnamese [12]. The general 

drawback of these methods is the use of hand-engineered 

feature selection, which is a time-consuming process 

because it involves a lot of data observation and analysis. 

In this paper, we propose a multilayer neural network 

model for generating SpamAssassin rules which selects 

good features and optimize rule weights at the same time. 

The weighted rule set obtained from training this neural 

network can be applied directly in SpamAssassin. The 

experiments showed that our network is fast to train and 

the resulted rule set has comparable detection rates to 

previous rule generation methods. 

 

Keywords:  neural network, rules generation, spam 

filtering, SpamAssassin. 

I.  INTRODUCTION 

Roughly five decades since its first implementation for 

ARPANET in 1971, electronic mail (e-mail) has involved 

into the most important form of online communication. 

Nowadays, its applications include but not limited to online 

identity verification, personal and business 

communications. According to Radicati’s report [20], in 

2018, there were 281.1 million e-mails being sent daily and 

the number of e-mail users reached 3.823 billion. Spam 

(unsolicited bulk e-mail) accounts for 55% of all e-mail 

messages as reported by Symantec in 2019 [21]. This 

volume of spam represents a serious problem which is not 

only annoying but also costly to e-mail users. 

The two most popular approaches to spam filtering are 

rule-based (or signature-based) filtering and machine 

learning. Although spam filters based on machine learning 

proved superior efficiency, better detection rates often 
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come with the cost of more computational power. 

Meanwhile, rule-based filters have been widely used for 

their low complexity and non-intrusive nature [18]. Among 

rule-based techniques, SpamAssassin1 remains the most 

utilized one on the e-mail server side. Because of its fast 

detection engine and sophisticated rule formats, 

SpamAssassin is able to capture a wide range of e-mail 

features in real-time applications of spam filtering. Since 

SpamAssassin’s capability depends on its rule set, 

researchers have proposed hybrid methods which make use 

of machine learning elements to generate rules from data 

[6], [11], [16]. 

Rule generation techniques for SpamAssassin follow a 

similar approach to traditional machine learning methods 

which consists of two major steps: feature 

selection/representation and model optimization. Once a 

presumably good set of features are chosen and vectorized, 

the model is trained only on that particular feature set. It is 

agreed [5] that the effectiveness of learning-based methods 

for spam filtering depends greatly on the feature selection 

phase. In other words, these rule generation techniques rely 

heavily on good rule (feature) selection to be effective. 

Unfortunately, this step is usually done separately and has 

no connection to the later step of training the rule set on 

data. The performance of the trained rule set is restricted by 

the quality of the feature set, which may not be the most 

effective one. Furthermore, the number of features also 

affects the filter’s performance. Generally, using more 

features results in better evaluation results in exchange for 

longer execution time. On the other hand, a spam filter 

tends to achieve better generalization (cross-corpora 

performance) with less features [18]. 

In recent years, neural networks have become easier to 

train thanks to new optimization methods and new 

activation functions. Neural networks are generally trained 

with a gradient-based method such as stochastic gradient 

descent (SGD) which relies on the calculation of partial 

derivatives. With the introduction of the back-propagation 

algorithm [1], it became possible to effectively optimize the 

weights of connections associated to hidden layers in multi-

layered neural networks with linear transfer functions and 

non-linear activation functions. The detection mechanism 
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of SpamAssassin is based on weighted keyword rules, 

which is similar to the perceptron model (a single-layer 

neural network). What its current rule optimization tool 

does is actually fitting a perceptron model on e-mail data. 

The model is built from a SpamAssassin rule set where 

each node acts as a rule in the set. In other words, each node 

in the perceptron model carries the rule’s weight as its own 

weight. 

In this paper, we propose a novel method that makes 

use of a multilayer neural network model for SpamAssassin 

rules generation. In this method, individual features are 

weighted and good features can be empirically selected. To 

realize these goals, we apply a customized training process 

on a neural network in which the former layers play the 

feature selection role and the last layer mimics the detection 

mechanism of SpamAssassin. 

The rest of this paper is organized as follows: 

- Section II reviews published works on rules 

generation techniques for SpamAssassin. 

- Section III discusses the detailed steps of the 

proposed method. 

- Section IV describes our experiments, the 

dataset and experiment results. 

- Section V draws a conclusion of this research’s 

outcome and discusses research direction. 

II. RELATED WORKS 

SpamAssassin is a popular open-source spam filter 

which makes use of multiple mechanisms for detecting 

spam messages. One of its detection mechanisms is based 

on weighted regular expression rules. These rules match 

against the header or body of e-mail. When an e-mail is 

being processed, a certain number of rules in the rule set 

are triggered by the content of that e-mail. The weights of 

those triggered rules are summed up as a single score which 

is the spam score of the e-mail message. If the spam score 

exceeds a pre-defined threshold value 𝑇, the message is 

then marked as spam. SpamAssassin allows the creation of 

customized rules and provides its users with a rule learning 

tool. This tool uses the SGD algorithm to train a perceptron 

model on labeled e-mail training data. The reason for this 

choice is that SpamAssassin’s detection mechanism is 

similar to a perceptron network where node weights 

represent rule scores and node activation is equivalent to 

rule match. One can either set the value of 𝑇 before learning 

SpamAssassin rules so as to let the learning algorithm 

adjust rule scores to suit the threshold 𝑇, or generate 

SpamAssassin rules first and later set the value of 𝑇 to suit 

the threshold used by the learning algorithm. 

Many methods have been proposed to improve 

SpamAssassin’s spam detection using data. In [6], different 

spam filtering techniques dated until 2003 were integrated 

into SpamAssassin and compared. Different feature 

detectors (e.g. SpamAssassin, Information Gain, 

clustering) and different machine learning algorithms (e.g. 

Naïve Bayes and variants, Perceptron by gradient descent, 

ID3) were used to generate SpamAssassin rules. 

Experiments were conducted on several datasets: author’s 

e-mails (15,000 e-mails), X Window System developer's 

Xpert mailing list + Annexia spam archive (15,000 e-mails, 

50% spam, 50% ham), Lingspam, SpamAssassin. The 

paper reported best results from the SpamAssassin 

combined with clustering feature detector. However, the 

authors also stated that more tuning work and better corpus 

were needed to reproduce other papers’ results more 

accurately. 

In [9], the author described his method to adjust the 

scores in a rule set containing all default SpamAssassin 

keyword rules and a number of Bayes rules. These new 

rules, which are activated when the Bayesian probability of 

an e-mail falls within a specific range, were added to the 

default rule set. For example, “BAYES_00 matches when 

bayes spam probability is between 0% and 5% etc” [9]. In 

order to obtain the best detection rate, a generic algorithm 

was used to find the scores for these pseudo-rules and other 

rules in the set. Rule score training was based on a self-built 

dataset of 1,176 hams and 1,611 spams. This method was 

evaluated and compared with 4 other spam detection 

methods on a testing dataset (also collected by the author) 

of 109 hams and 1,011 spams. These compared methods 

are Multi-Response Linear Regression (MLR), Logistic 

Regression [2], SVM trained by the SMO algorithm [15] 

and a variation of the C4.5 decision tree algorithm called 

J48 [3]. Results showed that the proposed method 

performed significantly better than SMO, which has the 

most stable performance across different testing scenarios 

among the 4 compared methods, in terms of ham error 

rates. This method also achieved the highest Total Cost 

Ratio (TCR) in all experimented methods in [9]. TCR is a 

measure of how costly the method is compared to the 

manual remove of spam messages. The higher the value of 

TCR, the better. 

The authors of [8] argued that the rule-based nature of 

SpamAssassin is not suitable for spam detection since spam 

e-mails are always changing. In order to verify this 

argument, the authors compared the default SpamAssassin 

rule set against a CBDF filter (a statistical method proposed 

by Kilgarriff et. al. in [4]). With the advantage of fitting to 

the training dataset, it is not surprising to see a significantly 

higher performance of CBDF compared to SpamAssassin. 

In addition, there was also the fact that personal e-mails 

were used for the experiments. SpamAssassin’s rule set 

was manually engineered and rule scores optimized on a 

corpus collected by the SpamAssassin Project. The bundled 

rule set is intended for the use of general English spam 

detection. It is not supposed to perform well on a 

personalized context. The 3,834 personal messages (of 

which 205 are spam e-mails) that were used in [8] are not 

representative enough to make the experiments convincing. 

That being said, it can be implied from these experiments 

that the default rule set of SpamAssassin’s is not suitable in 

personalized settings. 

Another effort to improve SpamAssassin’s 

performance was reported in [7]. The authors proposed the 

use of word stemming – a widely used preprocessing 

technique in information retrieval – as a way to combat 

spammers’ attempts to fool spam filters by using different 

word forms that are visually similar to the original word. 
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Examples of such words are “V*agr@”, “V.i-a.g*r.a”, etc. 

The stemming algorithm maps different representations of 

the same word to a unique hash value. These hashes (also 

called stems) are then used in the operations of rule-based 

or statistical filters. It means that different forms of the 

same word are treated as appearances of a single word in a 

document. As a result, spammer’s attempts to modify a 

message will only result in the same one. The experiment 

in [10] indicates that the application of the technique has 

greater effects in improving filtering performance on more 

recent messages (collected in 2004) than on older ones 

(collected in 2003). 

A framework for generating statistical SpamAssassin 

rules for Chinese was presented in [11], which employed 

different feature detection methods. In this method, only 

spam-related features are utilized for spam detection. The 

authors of [11] showed the effects of different hyper 

parameters such as the number of rules and the average 

pattern size. A previously introduced word segmentation 

method was used in [11] to control the average size of 

tokenized patterns. The authors used an SGD method [10] 

for training SpamAssassin rule scores which are treated as 

neuron weights in a perceptron network. From 

experimenting on a large self-built corpus of 194,088 spam 

and 305,140 ham, the author reported best performance for 

500 rules with an average pattern size of 3 characters (6 

bytes) and Conditional Probabilities as feature detector. 

In 2009, the application of another technique to 

improve SpamAssassin was proposed [16]. The authors 

combined active learning (AL) with semi-supervised 

learning (SSL) in order to not only increase 

SpamAssassin’s detection rates but also greatly reduce the 

work needed to label training data – making the method 

more practical to the general users. This method is 

applicable when there is a large dataset in which only a 

small portion are labelled. Semi-supervised learning has 

been used to automatically assign labels to the rest of a 

dataset provided that a part of it was manually labelled. 

Generally, a classifier is trained with the labelled data 

before being used to label a certain number of unlabeled 

ones. Those newly labelled samples with high confidence 

are then added to the training set to re-train the classifier. 

The authors of [16] believe that the samples which return 

high confidence actually contain very little new knowledge 

because they are similar to the labelled ones from the 

training data. Instead, the ones which the classifier is 

uncertain about have a higher chance of holding beneficial 

information. Based on this assumption, [16] proposed to 

leave the labeling of those suspicious unlabeled messages 

to e-mail users (active learning). However, since the users 

only agreed to manually label a limited number of 

messages, clustering was employed so that only the 

centroid needs to be manually labelled and the label 

propagates the entire cluster. It is necessary to note that the 

propagation of label only applies to ‘pure’ clusters – those 

whose messages receive the same label from the classifier. 

At this point, a number of newly labelled messages are 

added to the training set and the classifier is re-trained and 

the process can be repeated. Experiments on the TREC07p 

dataset, which contains 50,199 spams and 25,220 hams, 

shows that the method performs significantly better than 

the built-in auto-learning (SSL) feature of SpamAssassin 

(the experimented version is 3.2.5). Different setups are 

also compared to indicate the effects of the number of 

queries to the user, the number of clusters in the clustering 

step and the rate of label propagation. Increasing the 

number of user queries results in better true positive rates 

and lower false positive rates while changing the number 

of clusters does not modify the performance significantly. 

Additionally, higher rates of propagation often reduce 

performance rather than improve it. 

The authors of [17] aimed to modify the statistical 

SpamAssassin rules approach in [11] for the Thai language. 

A hybrid word segmentation method for Thai called 

CUWS was used for input tokenization. The two feature 

detectors that has the best performance for Chinese – 

Conditional Probabilities and Bayes’ Theorem – were 

adapted from [11]. The dataset used for evaluation of this 

model contains only 1,000 spams and 1,000 hams, all of 

them are in Thai language and are manually selected. The 

paper concluded that Thai rules increased SpamAssassin’s 

overall detection confidence (with higher, more 

distinguished scores between spam and ham). It also 

reported the performance of the generated rule set where 

spam recalls are from 76.8% to 86.4% and ham errors are 

from 0% to 5% across 10-fold cross-validation attempts. 

Whether the performance could be increased by increasing 

the size of training data was not reported. 

Another method to create SpamAssassin rules that 

targeted the Vietnamese language was reported in [19]. 

Features are extracted from the subject and body of both 

spam and ham e-mails in order to reduce the rate of false 

positives (ham misclassified as spam) which are more 

severe than false negatives. Moreover, a hybrid 

evolutionary algorithm (Hybrid Particle Swarm 

Optimization with Wavelet Mutation [14]) was used to 

optimize rule scores for its ability to better avoid overfitting 

than the previously used SGD algorithm. Experiment 

showed that the portion of ham rules in a rule set should be 

between 25% and 50% for best performance. While [19] 

found that the combination of spam and ham features 

worked best for Vietnamese, [11] and [17] found that only 

spam-liked patterns achieved higher performance in their 

languages respectively. 

III. GENERATING SPAMASSASSIN RULES 

BASED ON NEURAL NETWORK 

The reviewed methods above tried to improve 

SpamAssassin by focusing on different aspects in the spam 

detection process, namely the pre-processing of e-mail 

content [7], feature selection [11], [19], employing semi-

supervised learning on e-mail data [16] and introduction of 

new rules and assigning rule scores [9]. In this paper, the 

authors aim to improve SpamAssassin by proposing 

another method for extraction of useful rules from e-mail 

data and optimization of those rules’ scores. The method is 

based on training a neural network using a gradient-based 

algorithm. However, the actual goal is not the neural 

network itself, but rather a particular selection of weights 

from it. 
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A. Data preprocessing & representation 

From the training set consisting of spam and ham, we 

use vnTokenizer – a Vietnamese word segmentation tool 

[13] – to separate the words from the messages’ body and 

subject. Then, we create a set of distinct words 

(vocabulary) called Vs from the subjects. We call the 

similar set from the message bodies Vb. In the proposed 

method, removing stop words are not needed because 

feature selection is done during neural network training and 

unimportant words are excluded during the process. 

Each e-mail message is treated as a bag of words and 

represented by a one-hot encoding vector to simulate 

SpamAssassin’s detection mechanism. Each element of 

this vector is a word feature, with value 1 meaning the word 

is present in the e-mail message and value 0 meaning the 

opposite. In a one-hot encoding scheme for text, the 

frequency of a word is not recorded, thus the value of a 

word feature will be 1 even if the word appears multiple 

times. The fact that one feature is needed for every word in 

the dataset (a.k.a. for every word in the vocabulary) makes 

the size of the input vector equal to the size of the 

vocabulary. In our method, subject and body features are 

distinguished, so the encoded vector 𝑥 of an e-mail message 

contains two separate segments for subject words and body 

words. Therefore, its length is: |𝑥| = |Vs| + |Vb|. 

B. The neural network model 

The neural network that we use to learn SpamAssassin 

rules from a dataset consists of two main components. The 

first component is called the feature selector and the other 

one is called the predictor. The network and the training 

algorithm are designed so that selecting good features and 

learning the correct weights for those features are done in 

one process. 

 

Fig. 1.  The neural network structure with feature 
selector and predictor parts. 

The feature selector part consists of one layer of 

neurons which are activated by function 𝑓 defined in (1). 

An input e-mail message is fed into the feature selector 

layer in the form of a binary vector x which was described 

in a previous section. The input vector 𝑥 and the weight set 

𝜔 have the same size, which means each element in the 

input vector can be associated with one weight from 𝜔. The 

role of 𝜔 is to hold the importance of each word, which in 

turn decides whether the word is selected as a feature. The 

approach is to first exclude all features and gradually 

activate significant features – the ones whose weights 

increase to a certain threshold after a certain amount of 

training. To achieve this effect, we introduce a global hyper 

parameter 𝜀 and a weight 𝜔𝑖 associated to each element 𝑥𝑖 
of the input vector. At each neuron of the feature selector 

part, the product of the input 𝑥𝑖 and 𝑓(𝜔𝑖) is taken. When 

the output of 𝑓 is 0, the feature represented by 𝑥𝑖 is excluded 

from the forward pass but still included in the backward 

pass of the training process. 

𝑓(𝑥) = {
1, 𝑥 > 𝜀
0, 𝑥 ≤ 𝜀

 (1) 

In other words, it will have no effect on the output of 

the network but its weight 𝜔𝑖 will still be updated by the 

training algorithm and it still has a chance to be selected 

later. The value of 𝜀 should control the number of rules after 

training since it directly affects rule selection. 

The remaining part of the network, the predictor part, 

is a perceptron with a sigmoid activation function, without 

bias. This predictor layer is also the last layer of the 

network. It takes the output of the previous feature selector 

layer as its input and outputs a scalar value. Let the output 

of the feature selector layer be vector h and the output of 

this predictor layer be a scalar 𝑘. The output of the network 

is calculated using the formula (2). 

This predictor part simulates the default detection 

mechanism of SpamAssassin where the weights in the set 

𝑤 act as rule scores. These weights are initialized as 

random non-negative numbers and will stay non-negative 

throughout the training process. 

𝑘 = 𝜎(∑ℎ𝑖

|ℎ|

𝑖=1

∙ 𝑤𝑖) (2) 

Being output by the sigmoid function, 𝑘 is a real 

number within the range (0, 1). The prediction result can be 

obtained by mapping 𝑘 into into a discrete value of either 0 

(ham) or 1 (spam) respectively. The mapping function 

depends on the specific problem where the network is 

applied. In general, we define a threshold value 𝑇 that 

divides the range (0, 1). If 𝑘 is greater or equal to 𝑇, a 

positive prediction is concluded and vice versa. 𝑇 should be 

the middle value between the lowest and highest bounds of 

𝑘 (which are not always 0 and 1, see section III. C. for 

explanation). 

C. Training the neural network 

We train our neural network using the gradient descent 

method with backpropagation. The first step is to generate 

non-negative initial weights for two weight sets 𝜔 and 𝑤. 

It is done using random numbers in a folded normal 

distribution (taking the absolute value of Gaussian random 

numbers). Each initial weight is normalized by dividing it 

with its layer’s size. The gradient descent method can be 

summarized as follows. Each sample in the training set is 

labeled with a target value (desired outcome). For each 

sample, calculate the output using current weights and get 

the different from output and target as the output’s error. 

Calculate the partial derivative of the error with respect to 

each weight – which is the gradient of the weight. With 
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gradients, update the weights in a manner which reduces 

the error. A learning_rate value may be used to control the 

speed at which the weights change. Each loop through all 

the samples in the training set is called an epoch. This 

training process is repeated for many epochs until a 

desirable total averaged error (or any chosen evaluation 

measure) is reached. 

We have made some changes to the normal gradient 

descent training procedure to suit our network. Firstly, each 

weight 𝜔𝑖 in the set 𝜔 is updated as long as 𝑥𝑖 is 1, 

regardless of whether the corresponding feature is selected 

by function 𝑓 or not. This can be done by assuming that 

function 𝑓 always returns 1 when calculating the partial 

derivative of 𝜔𝑖. In opposite, the output of function 𝑓 will 

decide if a weight 𝑤𝑖 in the set 𝑤 is updated or not.  In other 

words, all weights in 𝜔 which is associated with input 𝑥𝑖 
value of 1 are updated whereas only the weights in 𝑤 which 

subjects to 𝑓(𝜔𝑖) = 1 (a.k.a. selected features) may be 

updated. Secondly, since sigmoid activation is used and 

rule weights are non-negative, the target value 𝑦0 for ham 

samples should be 0.5 instead of 0. This is because the 

weighted sum of activated features cannot be lower than 0 

and the sigmoid function outputs 0.5 for input 0. If the 

target 𝑦0 is set to 0 for ham samples, the output error could 

not be reduced pass 0.5. This issue may lead to unnecessary 

reduction of rule weights when a ham sample is fed to the 

network during training. 

Table I.   D0 dataset statistics 

User No. of messages Ham Spam 

1 

All 3,854 2,998 856 

EN 1,645 1,031 614 

VI 2,209 1,967 242 

2 

All 4,144 1,858 2,286 

EN 622 25 597 

VI 3,522 1,833 1,689 

3 

All 5,478 2,191 3,287 

EN 3,845 1,301 2,544 

VI 1,633 890 743 

Total 13,476 7,047 6,429 

D. Generating a weighted rule set 

The predictor part of the network structure is the 

representation of SpamAssassin’s rule-based detection. 

Each neuron of the predictor layer has a weight can be 

associated with a word. The neurons which are selected by 

the activation function 𝑓 of the previous layer are 

equivalent to SpamAssassin rules. A SpamAssassin rule set 

can then be generated by extracting information from the 

neural network model. In our experiments, we use 

SpamAssassin to test the resulting rule sets. 

IV. EXPERIMENTS 

A. Datasets 

Both the proposed method and the method in [19] 

utilized a word segmentation method [13] which do not 

work well with content in languages other than 

Vietnamese. If the target rule set is expected to handle 

emails in multiple languages, then it is required to have a 

method to reliably detect content language – which is not 

within the established scope of this research. English, 

however, is the language which can be tokenized by 

splitting by white-spaces and punctuations. Therefore, it is 

feasible to also perform tests on a labeled English dataset.  

Since a public spam e-mail corpus in Vietnamese cannot be 

found, we have collected a Vietnamese e-mail dataset to 

experiment with the proposed method. The raw dataset, 

hereafter referred as D0, consists of 17,869 e-mails from 3 

users who regularly use e-mail for work. The messages in 

D0 are written in English and Vietnamese. After removing 

e-mails with empty body or e-mails whose content is 

mainly composed of images, there are 13,476 e-mails left. 

 

Fig. 2.  recall and precision values for different 
threshold values for the method in [19] 

E-mail owners are asked to label their e-mails. For each 

message, they have to complete two labels: language and 

spam. The language label takes two values: “en” and “vi”. 

The spam label indicates that a message is spam (true) or 

ham (false). The labelers are asked to label their e-mails 

with this rule: if both the subject and body of the message 

has no valuable information, mark it spam, otherwise, mark 

it ham. 

In our dataset, we also extracted three more features 

which are: the number of attachments, the number of 

hyperlinks and the number of <img> tags. We believe that 

these features can be useful in further research. Table 1 

summarizes the statistics of our D0 dataset. 

The following experiments only utilize Vietnamese e-

mails and textual features which are subject and body in the 

dataset. We extracted only Vietnamese e-mails from 

dataset D0. As the result, we obtained a set of 7,364 

messages total, of which there are 4,690 ham and 2,674 

spam. We call this the D1 dataset in our experiments. 

Table II.  Cross-validated F1 score and precision 
measures of two methods on dataset D1 

Attempt # 
Method in [19] Proposed method 

Precision F1 Precision F1 

1 0.9628495 0.9513718 0.9674080 0.9553200 

2 0.9563476 0.9236125 0.9650735 0.9733037 

3 0.9592226 0.9501699 0.9630713 0.9739323 

4 0.9505882 0.9280245 0.9380793 0.9420964 



A NEURAL NETWORK METHOD FOR SPAMASSASIN RULES GENERATION 

5 0.9656238 0.9500285 0.9750567 0.9699248 

6 0.9551777 0.9395667 0.9252269 0.9390311 

7 0.9637827 0.9284745 0.9755455 0.9726182 

8 0.9616317 0.9246602 0.9667049 0.9555514 

9 0.9510974 0.9372036 0.9685275 0.9676212 

10 0.9645881 0.9506829 0.9420821 0.9514994 

Average 0.9590909 0.9383795 0.9586776 0.9600898 

In addition, we also use the TREC07 public spam 

corpus for evaluating the performance of the proposed 

method for English e-mails. With this dataset, it is also 

possible to compare our results with other English-based 

SpamAssassin rules generation methods. The TREC 2007 

corpus [12] includes e-mail messages collected from an e-

mail server in a time period of roughly 1 month. It is 

carefully analyzed and labeled by spam specialists at TREC 

and it has been widely used for spam filter benchmarking. 

The corpus contains 75,419 e-mail messages, 50,199 of 

which are marked as spam and the remaining 25,220 are 

legitimate messages. Both the message content and headers 

are provided. More datasets can be obtained from [12]. In 

our experiments, the TREC07 dataset is hereafter called the 

D2 set. 

B. k-fold cross validation 

In our experiments, k-fold cross validation (k = 10) is 

applied to increase confidence on the results. A dataset is 

first shuffled before it is divided into 10 equal parts which 

have roughly the same spam-to-ham ratio. The training and 

testing were repeated 10 times where each part of the 

dataset is selected as the test set while the rest are combined 

as the train set. This ensures that every part of the dataset 

contributes to both the training and testing results of a 

particular method. The results reported in this paper are the 

average values obtained from performing k-fold cross 

validation. 

C. Experiment 1 

1) Summary of previous method 

Among previous studies about generating 

SpamAssassin rules, we have found one study [19] that 

targeted the Vietnamese language. The method in [19] can 

be summarized as follows: 

 

Fig. 3.  recall and precision values for different 

threshold values for the proposed method. 

Firstly, words are extracted from e-mail subject and 

body using the method in [13]. Then, a number of highest-

quality words from spam e-mails and from ham e-mails are 

selected based on Bayes’ probability theorem. Each 

selected word is considered a feature as well as a rule, and 

a SpamAssassin rule set can be generated from the set of 

these words/features/rules. This feature selection step to get 

the set of keyword rules is done separately from the next 

step of optimizing rule scores. Without any connection 

from the set of selected rules to the prediction result of the 

rule set, the quality of selected rules could not be verified. 

Thus, this feature selection step is a blind process. Next, an 

evolutionary optimization algorithm called HPSOWM was 

used to optimize rule scores on a labeled training dataset of 

Vietnamese e-mail messages. 

 

Fig. 4.   Average recall, precision and F1 values of 
three different method configurations on the 

English dataset D2. 

In [19], various numbers of selected words as well as 

various ratios between selected spam words and ham words 

were tested. 

2) Experiment setup 

In this experiment, we reproduced the result of [19] and 

compared the performance of our proposed method on 

dataset D1. Two methods were used to independently build 

two separate SpamAssassin rule sets. For our previous 

method [19], a SpamAssassin detection threshold value 𝑇 

= 0.0 was used for both training and testing since the 

method also makes use of ham (negatively weighted) rules 

and 𝜎(0) = 0.5 (the center point between the target values 

0.0 and 1.0). Moreover, because the target number of rules 

has to be set manually, the reported best values of 500 spam 

rules and 500 ham rules were selected for the experiment. 

For our proposed method, a threshold value 𝑇 = 1.1 was 

used since 0.75 is the center point between the target values 

(0.5 and 1.0) and the network output 𝜎(1.1) ≈ 0.75. We 

determined the threshold value in advance in order to let 

the training algorithm fit the rule weights according to the 

threshold. By doing so, the selected threshold value should 

be the optimized one. The experiment is run in a k-fold 

cross validation scheme, explained earlier in this paper. 

precision =
tp

tp + fp
 (3) 

To reliably measure the performance of the generated 

rule sets, we used F1 score (5) since it is a balanced 

combination of the two popular measures: recall and 

precision. F1 score does not suffer from the problem in 
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classification where unreliable results come from the fact 

that samples are not distributed evenly between classes. 

recall =
tp

tp + fn
 (4) 

In the spam detection problem, the number of false 

alarms often receives the most attention because it is costly 

to discard a legitimate e-mail message. For this reason, we 

also use precision (3) to report the result of this experiment. 

precision is calculated from the number of true positives 

(correct prediction of spam, tp) and false positives (ham 

misclassified as spam, fp) while recall (4) is calculated 

from true positives and false negatives (spam misclassified 

as ham, fn). Spam messages are often stored in a separate 

folder in the user’s inbox, and are usually deleted 

automatically after a while. By the time of this writing, 

Gmail (mail.google.com) automatically deletes spam 

messages which are older than 30 days. It is against a user’s 

benefits when a ham message is detected as spam and being 

deleted without the user knowing. A low precision measure 

indicates that this situation happens more frequently. 

F1 = 2 ×
recall × precision

recall + precision
 (5) 

Since a statistical classifier is not guaranteed to achieve 

100% accuracy (the amount of correct predictions over all 

predictions), recall is often sacrificed to gain better 

precision. It can be done by reducing the classifier’s 

sensitivity, making it harder for the classifier to generative 

positive predictions. Reducing sensitivity lowers recall 

while raising precision and vice versa. In SpamAssassin, 

the filter’s sensitivity is governed by the previously 

mentioned threshold value 𝑇. Sensitivity and threshold are 

opposite terms: the higher the threshold, the lower the 

sensitivity. 

In practice, e-mail users are often concerned with the 

trade-off between recall and precision. High recall frees the 

user’s inbox of spam but also leads to more legitimate 

messages being moved to the junk mail folder. Meanwhile, 

high precision means less ham are mistakenly marked as 

spam but also means less spam are detected, leaving more 

spam messages in the user’s inbox. In this experiment, we 

also report recall and precision at different threshold values 

to demonstrate the concerned trade-off (see Fig. 2 and Fig. 

3). 

3) Result 

It can be observed from Table 2 that the new method 

achieved comparable precision as the one reported in [19]. 

However, the method in [19] has a significantly lower 

recall rating, as can be inferred from a lower F1 score. It can 

be drawn from these figures that the proposed method can 

filter much more spam messages while having a similar 

capacity to prevent legitimate messages from being sent to 

the junk mail box.  

Table III.  Results of three methods on dataset D2 

# 
Default SA Re-trained SA Proposed 

Prec. F1 Prec. F1 Prec. F1 

1 0.91433 0.90893 0.96914 0.94703 0.98190 0.96610 

2 0.91548 0.92585 0.97302 0.95304 0.97952 0.97570 

3 0.92336 0.90660 0.97623 0.94955 0.98637 0.97605 

4 0.93057 0.90933 0.97410 0.96272 0.97916 0.97159 

5 0.93701 0.92164 0.97390 0.95862 0.98439 0.97589 

6 0.94760 0.92726 0.97558 0.95281 0.98728 0.98044 

7 0.92081 0.90485 0.97009 0.95318 0.98466 0.97804 

8 0.94088 0.93806 0.97098 0.95175 0.97866 0.96892 

9 0.96800 0.92173 0.97469 0.95488 0.97580 0.96973 

10 0.93139 0.92673 0.96946 0.95236 0.98055 0.97238 

Avg. 0.93294 0.91910 0.97272 0.95359 0.98183 0.97348 

k-fold cross-validated precision (Prec.) and F1 score of our proposed 

method, default SpamAssassin rule set and re-trained default 

SpamAssassin rule set on English dataset D2 

D. Experiment 2 

We carried out this experiment to see how effective this 

new method is for English spam detection compared to the 

original method that generated SpamAssassin’s default rule 

sets. For this goal, the dataset D2, which is a public spam 

corpus in English, was used for this experiment. The 

default, unmodified rule set that comes with SpamAssassin 

3.4.2 is used as a baseline for the comparison. Although this 

rule set is supposed to effectively detect spam for English 

e-mail messages in general, it was not originally trained on 

D2. Therefore, we also re-trained its rule weights on D2 and 

included the adjusted rule set in the comparison. We use 

the two metrics in the previous experiment which are F1 

score and precision for presenting k-fold cross-validated 

results. 

The default SpamAssassin rule set achieved a relatively 

high performance despite not being trained on the same 

dataset. After re-training of rule scores, the results 

increased significantly, especially in the precision measure. 

Among the three configurations of this experiment, our 

proposed method outperforms the other two methods with 

the highest values in both precision and F1 metrics. Fig. 4 

shows the relation between three performance measures 

across the experimented rule sets. 

V. CONCLUSION 

SpamAssassin rules were previously generated using 

the traditional approach which involves hand-engineered 

feature selection [6], [11], [17], [19]. In this approach, rule 

selection and score training are separate processes where 

the former one decides the outcome of the latter. However, 

this is a one-way influence in which score training cannot 

provide any feedback to help improve the quality of rule 

selection. In other words, feature selection is not optimized 

because there is not a cost function to optimize on. 

Contrary to that approach, our proposed method combines 

the two processes into a single neural network so that rule 

selection can also be optimized based on the final cost 

function (the training error). The experiments showed that 

our presented method is able to achieve superior 

performance to previous techniques on both English and 

Vietnamese datasets. With this model as a general 

framework, modifications can be made to parts of the 

neural network to achieve desirable effects. For example, 

the activation function 𝑓 can be improved to include more 
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mechanisms to improve its ability to measure a feature’s 

quality. 
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PHƯƠNG PHÁP SINH LUẬT SPAMASSASSIN 

DỰA TRÊN MẠNG NƠ-RON 

Tóm tắt: SpamAssassin đã và đang được ứng dụng rộng 

rãi để lọc thư rác trên các máy chủ thư điện tử bởi vì bộ 

công cụ này có khả năng xử lý thời gian thực tốt và có thể 

dễ dàng tùy chỉnh. Tuy nhiên, SpamAssassin chỉ tích hợp 

sẵn hỗ trợ dành cho tiếng Anh. Mặc dù tập luật mặc định 

của SpamAssassin dành cho tiếng Anh được cập nhật 

thường xuyên, người sử dụng thường phải tự huấn luyện 

tập luật phù hợp với dữ liệu thư điện tử của họ. Đã có nhiều 

phương pháp được đề xuất cho bài toán sinh luật 

SpamAssassin cho nhiều ngôn ngữ như tiếng Anh [6], [9], 

[16], tiếng Trung [11], tiếng Thái [17] và tiếng Việt [12]. 

Hạn chế chung của những phương pháp này nằm ở khâu 

lựa chọn đặc trưng được thực hiện trực tiếp bởi chuyên gia. 

Công việc này đòi hỏi nhiều thời gian bởi vì dữ liệu cần 

được quan sát và phân tích tỉ mỉ. Trong bài báo này, các 

tác giả đề xuất một mô hình mạng nơ-ron nhiều lớp để sinh 

luật, tối ưu hóa trọng số luật và đồng thời tự động chọn ra 

tập thuộc tính tốt. Tập luật có trọng số thu được từ kết quả 

huấn luyện mô hình có thể được áp dụng trực tiếp trên phần 

mềm lọc thư rác SpamAssassin. Các thí nghiệm cho thấy 

mô hình mạng nơ-ron tốn ít thời gian để huấn luyện và tập 

luật được sinh ra có hiệu năng tốt so với những phương 

pháp sinh luật trước đó. 

Từ khóa: mạng nơ-ron, sinh luật, lọc thư rác, 

SpamAssassin 
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