
Dinh-Nghiep Le, Van-Thi Hoang, Duc-Toan Nguyen, and The-Anh Pham

A STUDY ON PARAMETER TUNING FOR

OPTIMAL INDEXING ON LARGE SCALE

DATASETS
Dinh-Nghiep Le∗, Van-Thi Hoang†, Duc-Toan Nguyen‡, The-Anh Pham§

∗ Hong Duc University (HDU)
†Department of Education and Training, Thanh Hoa city
‡ Department of Industry and Trade, Thanh Hoa city

§ Hong Duc University (HDU)

Abstract—Fast matching is a crucial task in many com-
puter vision applications due to its computationally inten-
sive overhead, especially for high feature spaces. Promising
techniques to address this problem have been investigated
in the literature such as product quantization, hierarchical
clustering decomposition, etc. In these approaches, a distance
metric must be learned to support the re-ranking step that
helps filter out the best candidates. Nonetheless, computing
the distances is a much intensively computational task and
is often done during the online search phase. As a result,
this process degrades the search performance. In this work,
we conduct a study on parameter tuning to make efficient
the computation of distances. Different searching strategies
are also investigated to justify the impact of coding quality
on search performance. Experiments have been conducted
in a standard product quantization framework and showed
interesting results in terms of both coding quality and search
efficiency.

Index Terms—Feature indexing, Approximate nearest
neighbor search, Product quantization

I. INTRODUCTION

With the increasing development of social networks and
platforms, the amount of data in multimedia applications
grows rapidly in both scale and dimensional aspects.
Indexing and searching on these billion-scale and high-
dimensional datasets become a critical need as they are
fundamental tasks of any computer vision system. In
this field, objects are mostly unstructured and usually
unlabeled. It is thus very hard to compare them directly.
Instead, the objects are represented by real-valued, high-
dimensional vectors and some distance metrics must be
employed to perform the feature matching. In most sit-
uations, it is impractical for multimedia applications to
perform exact nearest neighbor (ENN) search because of
expensively computational cost. Therefore, fast approxi-
mate nearest neighbor (ANN) search is much preferred in
practice to quickly produce (approximate) answers for a
given query with very high accuracy (> 80%).

As the key techniques for addressing the ANN search
problem, product quantization (PQ) [1] and its optimized
variations [2], [3], [4] have been well studied and demon-
strated promising results for large-scale datasets. In its

Correspondence: The-Anh Pham
email: phamtheanh@hdu.edu.vn
Manuscript received: 6/2020, revised: 9/2020, accepted: 10/2020.

essence, the PQ algorithm first decomposes the high-
dimensional space into a Cartesian product of low di-
mensional sub-spaces and then quantizes each of them
separately. Since the dimensionality of each subspace is
relatively small, using a small-sized codebook is sufficient
to obtain the satisfied searching performance. Although
computational cost can be effectively reduced, the PQ
method is subjected to the key assumption that the sub-
spaces are mutually independent. To deal with this prob-
lem, several remedies have been proposed to optimize the
quantization stage by minimizing coding distortion such
as Optimized Product Quantization (OPQ) [3], ck-means,
[4], local OPQ [5]. In the former methods, OPQ and ck-
means, the data is adaptively aligned to characterize the
intrinsic variances. Codebook learning is jointly performed
with data transformation to achieve the independence and
balance between the sub-spaces. As a result, quantization
error is greatly reduced, yielding better fitting to the
underlying data. Nonetheless, these methods are still less
effective for the case of multi-model distribution feature
spaces. Latter method, like local OPQ, aims at handling
this issue by first decomposing the data into compact
and single-model groups, followed by applying the OPQ
process for each local cluster. Alternatively, other tree
quantization methods, e.g., Additive Quantization (AQ)
[6], Tree Quantization (TQ) [7], have been presented to
deal with the mutual independence assumption of PQ. Dif-
fering from the PQ spirit, these methods does not divide
the feature space into smaller sub-spaces. They instead
encode each input vector as the sum of M codewords
coming from M codebooks. Moreover, the codewords in
AQ and TQ are of the same length as the input vectors,
but many components are set to zero in each codeword of
TQ. As the sub-space independence assumption is omitted,
the AQ and TQ-based methods give better coding accuracy
than PQ but they are not superior to PQ in terms of search
speedups [7].

Recently, hierarchical clustering decomposition methods
[8], [9], [10] have been extensively utilized as an embed-
ding fashion with the PQ framework. In the hierarchical
clustering approach [11], a clustering algorithm is itera-
tively applied to partition the feature vectors into smaller
groups. The entire decomposition can be well represented
by a tree structure that works as an inverted file structure
for driving the search process. Different attempts [12], [13]



A STUDY ON PARAMETER TUNING FOR OPTIMAL INDEXING ON LARGE SCALE DATASETS

have incorporated the clustering tree with a priority queue,
resulting in an effective search strategy. Combining the
benefits of hierarchical clustering idea and product quan-
tization, the work in [8] has proposed an unified scheme
and substantially improved the ANN search performance.
Later improvements [9], [10] focus on optimizing the
coding quality by introducing the concept of semantic sub-
space decomposition. As such, the data space is divided
into sub-spaces or sub-groups, each of which contains
elements closing to each other. Product quantization is then
performed for each sub-group. The resulting quantization
quality has been significantly improved.

One of the main difficulties posed in a product quantiza-
tion scheme is concerned with the use of a distance metric
to construct a short-list of candidate answers for a given
query. In the literature, two kinds of distance metrics are
often employed, symmetric distance computation (SDC)
and asymmetric distance computation (ADC). The former
approximates the distance between two points by the (Eu-
clidean) distance between their quantization codewords. In
contrast, the latter measures the distance of two points
as how far a point is from the quantization codeword
of the other point. From the definition, it is obvious to
observe that the ADC gives a better approximation of
the Euclidean distance than the SDC does. However, this
favored property comes at a computational cost. The ADC
distances must be computed during the online searching
phase, while the SDC is not. In fact, the SDC metric
can be pre-computed using the lookup tables when the
codebook is learned. In this work, we favor the use of
SDC measurements to improve the search timings, while
still expecting a high level of coding quality. To meet
this double-goal question, we propose first to employ the
hierarchical product quantization (HPQ) scheme [9] to
achieve the minimal construction error. We then perform
different studies to derive the best parameter tuning for
effective usage of the SDC distance. To validate the
propositions, extensive experiments have been conducted
and showed interesting results.

For the remainder of this paper, Section 2 reviews the
main points of PQ method, HPQ as well as hierarchical
vocabulary clustering tree. Section 3 describes the exper-
iment protocol, datasets, and evaluation results. Finally,
Section 5 draws some key remarks and discusses the
follow-up works.

II. SYSTEM ARCHITECTURE

In this work, it is denoted that X is a dataset in the D-
dimensional feature vector space (RD) and for a given
vector x ∈ RD, let aj(x) with 1 ≤ j ≤ m be the
operator that returns a sub-vector of x starting from the
jth dimension to (j+h)th dimension where h = D/m−1,
here m is an integer such that D is a multiple of m. Given
a vector x ∈ RD, one can employ aj(x) to split x into
m disjoint sub-vectors {a1(x), a2(x), . . . , am(x)}, each of
which has the length of D/m.

In the PQ method [1], a learning dataset X is divided
into m disjoint sub-spaces in the way as the operator aj(x)
does. For each sub-space, a clustering algorithm is then
applied to learn a codebook composing of K codewords or

clusters (typically, m = 8 and K = 256). Each codeword
has length of D/m. Given an input vector x ∈ RD,
the quantization of x is done by dividing x into m sub-
vectors followed by finding the nearest codeword of each
sub-vector in the corresponding codebook. Specifically, a
quantization operator qj(x) is defined in the jth sub-space
as follows:

qj(x)← arg min
1≤k≤K

d(aj(x), cj,k) (1)

where cj,k is the kth codeword of the codebook con-
structed from the jth sub-space, and d is the Euclidean
distance function.

With the qj(x) defined above, quantization of x is a m-
dimensional integer vector formed by concatenating the
quantization in each sub-space:

q(x)← {q1(x), q2(x), . . . , qm(x)}. (2)

For convenience of presentation, we also denote that:

q̂j(x)← arg min
cj,k

d(aj(x), cj,k) (3)

with 1 ≤ k ≤ K. That means q̂j(x) outputs the codeword
closest to the sub-vector aj(x) in the jth sub-space.

PQ uses both SDC and ADC distances for re-ranking
the candidates. Mathematically, the SDC distance between
two points x, y ∈ RD is formulated as follows:

dSD(x, y) =
m∑
j=1

d(q̂j(x), q̂j(y)), (4)

while, the ADC distance is approximately computed by:

dAD(x, y) =
m∑
j=1

d(aj(x), q̂j(y)). (5)

It is worth noting in the PQ scheme that the sub-spaces
are grouped with the same order as in the original space.
Hence, it is probably not ensured that the resulting sub-
spaces are mutually independent and balanced (in terms
of variance). These criteria are needed for yielding good
coding quality. Furthermore, the codebooks in different
sub-spaces may contain similar codewords due to the
similarity in visual content which appears at different
positions in a scene. It thus does not meet the assumption
of mutual independence and also raises the question of
redundancy in bit allocation for the codewords.

To address these issues, we have recently proposed a
novel coding quantization scheme known as hierarchical
product quantization (HPQ) [9]. In contrast to PQ, space
decomposition is done in such a way that similar data
points shall enter into one sub-space. As such, the points
in each sub-space are highly correlated, while the two dif-
ferent sub-spaces are mutually independent. In particularly,
HPQ algorithm can be sketched as follows:
• Divide the database X ∈ RD into m sub-spaces

(m = 8) as the PQ does.
• Apply a clustering algorithm for the data in all the

sub-spaces to form m sub-groups.
• Train a codebook (each has K codewords) for the

data contained in each sub-group.



Dinh-Nghiep Le, Van-Thi Hoang, Duc-Toan Nguyen, and The-Anh Pham

When the codebooks are learned, quantizing a vector
x ∈ RD is proceeded in two steps: finding the closest
sub-group for each sub-vector of x and finding the closest
codeword in the corresponding sub-group. Algorithm 1
outlines the main steps of this process. As the sub-groups
are constructed by a clustering process, it is obvious to
see that they are mutually independent and distinctive
(i.e., the data in each sub-group are highly correlated).
Due to its natural process, we consider each sub-group
as a semantic sub-space for codebook learning. This nice
property helps yield high coding quality. However, when
applied to ANN search task, the query time is impacted
by the two-step quantization process as described above.
Furthermore, HPQ is also subjected to the expensive cost
of distance computation, especially for the ADC distance.

Algorithm 1 HPQuantizer(x, S, C)
1: Input: An input vector (x ∈ RD), list of m sub-groups

(S) each has a center Sj , and the list of m codebooks
(C) each has K codewords.

2: Output: The quantization code of x (i.e., q(x)).
3: m← length(S) {the number of sub-groups}
4: split x into m sub-vectors: a1(x), a2(x), . . . , am(x)
5: cj ← 0 for j = 1, 2, . . . ,m {Initiated values of HPQ

code}
6: for each aj(x) do
7: h ← arg min1≤i≤m d(aj(x), Si) {find the closest

sub-group}
8: c∗j ← arg min1≤i≤K d(aj(x), Ch(i)) {Ch(i): the

ith codeword of the hth codebook}
9: cj ← h×K + c∗j

10: end for
11: return {cj}

In the present work, we investigate an extension of HPQ
and study the impact of different parameters to the coding
quality. In the favor of SDC distance, we aim at deriving
the best usage of pre-computed lookup tables so that the
system can produce excellent ANN search performance.

Finer space decomposition: To use effectively the SDC
metric, it is needed to give more effort for optimizing the
coding quality of the codebooks. One can employ a strong
method for this task such as ck-means [4], OPQ [3] but
it comes at the cost of heavily computational overhead
and thus can degrade the search timings. In our study, we
propose to divide the feature space into finer sub-spaces
for alleviating the impact of curse-of-dimensionality (i.e.,
m = 16 the number of sub-spaces). On the other hand,
it is not necessary to use a high number of codewords
for each codebook. By default, the number of codewords
is set to K = 256 in most of the works in the literature
[4], [3], [9], [1]. In the current study, we investigate the
impact of coding quality by varying the parameter K
in the collection of {32, 64, 128, 192}. By using lower
codewords, it gives the computational benefit for both
online and offline phases. The analytical computation cost
of the quantization step (i.e., Algorithm 1) is characterized
as: m×(m+K). That is the number of times the Euclidean
distance operation d() is invoked.

It is worth noting that the dimensionality of the sub-

Bảng I
THE NUMBER OF TIMES CALLING THE DISTANCE OPERATOR d() FOR

THE QUANTIZATION PROCESS

Method SIFT GIST K = 64 K = 128 K = 256

PQ (m = 8) R16 R120 - - 2048
HPQ (m = 16) R8 R60 1280 2304 4352

space is also attributed to the complexity of quantization
process. For instance, in the PQ method (m = 8), the
Euclidean distance function d() operates in R16 and R120

sub-spaces for 128D SIFT and 960D GIST feature sets1,
respectively. When setting parameter m = 16, HPQ
divides the feature space into finer sub-spaces resulting in
less computation of the distance function. For a summary,
Table I gives a picture of quantization complexity between
PQ method and Algorithm 1 for several values of K
accompanying the dimensionality of sub-spaces for SIFT
and GIST features. One can observe that by varying the
parameters m and K, HPQ does not incur much compu-
tation cost compared to the standard PQ method. In terms
of coding quality, we shall provide detailed justification in
the experimental section.

Efficient quantization with partial distance search:
To further alleviate the computational overhead of the
quantization process (e.g., our two-step quantization), we
incorporate the use of partial distance search (PDS) [14]
that helps terminate early the process of finding the closest
codewords. In its essence, PDS performs unrolling the
loop of distance computation in high dimensional space.
By comparing the current (partial) distance value with the
best distance established so far, it can decide to terminate
early the loop. Algorithm 2 embeds the PDS idea into the
computation of distance operator.

Algorithm 2 Dpds(x, y, dbest)
1: Input: Two input real vectors (x, y) and the best

distance so far (dbest).
2: Output: The (partial) distance between x and y
3: n← length(x) {x and y are the same dimensionlity}
4: d← 0
5: for j = 1, 2, . . . , n do
6: a← x(j)− y(j)
7: d← d+ a× a
8: if d > dbest then
9: return d {terminate early if d is not better than

dbest}
10: end if
11: end for
12: return d

With the PDS distance defined above, one can substitute
the step of finding the closest center (i.e., lines 7 and 8
in Algorithm 1) by a more efficient procedure as follows
(Algorithm 3):

1http://corpus-texmex.irisa.fr/



A STUDY ON PARAMETER TUNING FOR OPTIMAL INDEXING ON LARGE SCALE DATASETS

Algorithm 3 PDSQuantizer(x, L)
1: Input: An input vector (x ∈ Rn) and a list L

containing centers or codewords in the sub-space Rn.
2: Output: The center in L closest to x.
3: s← length(L) {the size of the list L}
4: ibest ← 1 {Initiated value for the closest center}
5: dbest ← d(x, L(ibest)) {Euclidean distance}
6: for i = 2, . . . , s do
7: d← Dpds(x, L(i), dbest) {PDS distance}
8: if d < dbest then
9: dbest ← d

10: ibest ← i
11: end if
12: end for
13: return ibest

Incorporation of indexing clustering tree: Apart from
improving the coding quality of the codebooks, it is needed
to use an efficient indexing scheme to deal with the
ANN search task. Hierarchical vocabulary clustering has
been well studied in the past and achieved strong results
when embedding into the product quantization fashion [8],
[10]. In this study, we also employ this framework to
perform ANN search. The search is optimized to obtain
the highest speedup for a specific search precision. This
was accomplished by a binary search procedure [15] which
performs sampling on two parameters: the number of
leaf nodes to visit and the size of the candidate short-
list. In addition, as we use a higher value of m (i.e.,
m = 16 for obtaining finer space decomposition), it makes
sense to apply the idea of PDS when compute the SDC
distance between the query and the quantized samples in
the database. As shall be shown in the experiments, this
slight trick produces noticeable search speedups.

III. EXPERIMENTAL RESULTS

A. Datasets and evaluation metrics

In this section, we carry out a number of comparative
experiments to validate the performance of our system
in terms of both coding quality and search timings. For
this purpose, state-of-the-art methods for coding and ANN
search have been included in our study. These methods
include FLANN library2 [13], EPQ [8], Optimized EPQ
(OEPQ) [16], HPQ [9], PQ [1] and the ck-means (i.e.,
Optimized PQ) [4]. For the evaluation datasets, we have
chosen two benchmark feature sets: ANN_SIFT1M and
ANN_GIST1M [1]. Detailed information of these datasets
are given in Table II.

Bảng II
THE DATASETS USED FOR ALL THE EXPERIMENTS

Dataset #Training #Database #Queries #Dimension

ANN_SIFT1M 100,000 1,000,000 10,000 128
ANN_GIST1M 500,000 1,000,000 1000 960

As for the evaluation metrics, we employed the score
Recall@R to measure the coding quality of the our system,

2http://www.cs.ubc.ca/research/flann/

PQ, and ck-means. These methods have been designed to
minimize quantization errors. Here, Recall@R measures
the fraction of corrected answers from a short-list of R
candidates (typically R = 1, 100, 1000). For PQ and ck-
means, we compute Recall@R for both SDC and ADC
distances, whereas our system will be evaluated by using
the SDC only. The goal here is to explore the marginal
improvement of using finer sub-spaces. In addition, we
also employed an other metric for measuring the search
timings. Specifically, this matter can be well justified by
using the search speedups/precisions curves as done in the
literature [13], [17]. The speedups are relatively computed
to sequence scan to avoid the impact of computer config-
uration. Search speedups are computed for a method A
(SA) as follows:

SA =
tSeq

tA
(6)

where tA, tSeq are the needed time to accomplish a
given query of the method A and the brute-force search,
respectively. For the stability, the search speedups and
precisions are averaged for k queries, where k = 10, 000
for SIFT and k = 1000 for GIST datasets. All the tests are
run on a standard computer with following configuration:
Windows 7, 16Gb RAM, Intel Core (Dual-Core) i7 2.1
GHz.

B. Results and discussions

This section is dedicated to the evaluation of all the
studied methods for justifying the quality of codebooks
and ANN search efficiency as well. We shall first present
the results hereafter in terms of coding quality for the
method: PQ, ck-means, and our HPQ method with varying
parameters K (i.e., the number of codewords). For a
summary, we report the parameter settings used in our
tests as follows (Table III):

Bảng III
PARAMETERS USED IN OUR TESTS

Method #sub-spaces (m) #codewords (K)

PQ 8 256
ck-means 8 256
HPQ 16 {32, 64, 128, 192}

Figure 1 shows the Recall@R of our method with
different settings of parameter K for both SIFT and GIST
features using the SDC distance. As can be seen in the
plots, coding recalls get increasing with respect to the
high value of K. We have chosen the highest value of
K = 192 so as to make it still lower than the default
value used in PQ and ck-means (K = 256). In addition,
one can also observe that the recall curves, corresponding
to K = {128, 192}, operates on a par with each other for
both feature datasets. This fact gives useful insights for the
situations where one wishes to obtain the highest search
speedups while expecting noticeable coding quality.

To have deeper insights of the proposed method, Figure
2 presents the comparative results with PQ and ck-means.
In this evaluation, we selected the HPQ with K = 32 (the
lowest performance curve, namely HPQ32) to be compared



Dinh-Nghiep Le, Van-Thi Hoang, Duc-Toan Nguyen, and The-Anh Pham

10
0

10
1

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
ec

al
l@

R
1M SIFT

 

 

HPQ192
HPQ128
HPQ64
HPQ32

(a)

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
ec

al
l@

R

1M GIST

 

 

HPQ192
HPQ128
HPQ64
HPQ32

(b)

Hình 1. Coding quality of our system (HPQ) with varying number of codewords: (a) SIFT and (b) GIST features.

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
ec

al
l@

R

1M SIFT

 

 

HPQ32
ck−means (AD)
PQ (AD)
ck−means (SD)
PQ (SD)

(a)

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
ec

al
l@

R

1M GIST

 

 

HPQ32
ck−means (AD)
PQ (AD)
ck−means (SD)
PQ (SD)

(b)

Hình 2. Coding quality of our system (HPQ32) and other methods: (a) SIFT and (b) GIST features.

with other methods. For the SIFT dataset, HPQ32 signif-
icantly outperforms all other methods for both ADC and
SDC distances. It is worth mentioning that ck-means is a
strong optimization version of the PQ method in the means
of quantization quality but its performance (even for ADC
distance) is much lower than that of HPQ32. This fact
is very impressive when considering that HPQ32 uses a
small number of codewords (i.e., 32 codewords for each
codebook). When working on higher dimensional space
(i.e., 960D GIST features), HPQ32 performs on a par
with ck-means (ADC distance) version and is substantially
superior to other methods. Connecting this outstanding
performance of HPQ32 with the superior versions of HPQ
presented previously (Figure 1), it can be concluded that
by using finer sub-space decomposition, one can achieve
significant benefit in terms of coding quality even the
number of codewords is not many.

The results presented in Figures 1, 2 consistently con-
firm the expected quality of our method for the code-
book learning. The remaining open question would be

concerned with the search efficiency when applying to
the ANN search task. In the following discussions, we
shall continue to show the performance of our method
for this task. Figure 3 presents the operating points of
search speedups as a function of precision for all the HPQ
versions in our study. For the SIFT dataset, the gap in
performance is not that much for all the HPQ versions.
In details, HPQ64 performs best in this case although
its behavior is slightly superior to that of HPQ128. This
observation is not fully synchronized for GIST dataset
as shown in Figure 3(b). First, the performance gap is
more noticeable, say for instances at 920× and 732×
in speedups of HPQ128 and HPQ32, respectively, at the
precision of 80%. Second, HPQ192 tends to be close to the
winner (HPQ128), especially when considering very high
search precisions (> 90%). These new findings can be
explained by the high dimensional space of GIST features
in which coding quality plays a role to the success of
search efficiency. As already noted in the Figure 1 (b),
HPQ128 is virtually identical to HPQ192 in terms of



A STUDY ON PARAMETER TUNING FOR OPTIMAL INDEXING ON LARGE SCALE DATASETS

80 82.5 85 87.5 90 92.5
150

200

250

300

350

400

450

500

Precision (%)

S
pe

ed
up

 o
ve

r 
se

qu
en

ce
 s

ea
rc

h
SIFT dataset (128D): 10K queries and 1M data points

 

 
HPQ64
HPQ128
HPQ32
HPQ192

(a)

80 82.5 85 87.5 90 92.5
200

300

400

500

600

700

800

900

1000

Precision (%)

S
pe

ed
up

 o
ve

r 
se

qu
en

ce
 s

ea
rc

h

GIST dataset (960D): 1K queries and 1M data points

 

 

HPQ128
HPQ192
HPQ64
HPQ32

(b)

Hình 3. ANN search performance of system (HPQ) with varying number of codewords: (a) SIFT and (b) GIST features.

80 82.5 85 87.5 90 92.5 95

100

150

200

250

300

400

500

Precision (%)

S
pe

ed
up

 o
ve

r 
se

qu
en

ce
 s

ea
rc

h

SIFT dataset (128D): 10K queries and 1M data points

 

 

HPQ64
OEPQ
EPQ
best−FLANN

(a)

80 82.5 85 87.5 90 92.5 95

50
100

200

300

400

500

600

700

800

900

1000

Precision (%)

S
pe

ed
up

 o
ve

r 
se

qu
en

ce
 s

ea
rc

h
GIST dataset (960D): 1K queries and 1M data points

 

 

HPQ128
OEPQ
EPQ
best−FLANN

(b)

Hình 4. ANN search performance of our system and other methods: (a) SIFT and (b) GIST features.

coding quality, whereas HPQ128 incurs less computational
overhead than HPQ192 does. As a result, HPQ128 gives
the best search speedups in the studied experiments.

The last experiment has been conducted as shown
in Figure 4 in which comparative search efficiency is
provided for the best HPQ version (i.e., HPQ64 for SIFT
and HPQ128 for GIST features), Optimized EPQ (OEPQ),
EPQ, and the best method of FLANN (i.e., best-FLANN).
It is worth highlighting that OEPQ is the state-of-the-art
method for ANN search on the SIFT and GIST datasets
[9], [16]. In this study, one can realize that HPQ64 can
also reach the same level of search efficiency as OEPQ
does for the SIFT dataset. Noticeably, using HPQ with 128
codewords provides substantial improvements for the GIST
features. For instances, it gives a speedup of 921× com-
pared to sequence scan when fixing the search precision
of 80%. All these results confirm the superiority of our
method, in terms of both coding quality and ANN search
efficiency, especially when working in high dimensional
spaces.

IV. CONCLUSIONS

In this work, a deep analysis and study of hierarchical
product quantization has been conducted to examine its
performance on the aspects of quantization quality and
ANN search efficiency. Our proposal has been targeted to
the fact that using finer space decomposition is essential
for accomplishing these double-goal objective. Throughout
extensive experiments in comparison with other methods,
it was showed that our method provides significant im-
provement for various datasets and even tends to performs
well with respect to the increase in space dimensionality.
An interesting remark derived from our study is that a
decent product quantizer can be constructed even without
using a high number of codewords. As shown in our
experiments, by using just as few as 32 codewords, one can
also obtain satisfactory performance. Despite the obtained
results are promising, we plan to investigate the inclusion
of ADC distance as well as other deep learning based
encoders for optimizing the method in follow-up works.



Dinh-Nghiep Le, Van-Thi Hoang, Duc-Toan Nguyen, and The-Anh Pham

TÀI LIỆU THAM KHẢO

[1] H. Jegou, M. Douze, and C. Schmid, “Product Quantization for
Nearest Neighbor Search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 1, pp. 117–128, 2011.

[2] A. Babenko and V. Lempitsky, “The inverted multi-index,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 6, pp. 1247–1260,
2015.

[3] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 744–755,
2014.

[4] M. Norouzi and D. J. Fleet, “Cartesian k-means,” in Proceedings
of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition, ser. CVPR ’13, 2013, pp. 3017–3024.

[5] Y. Kalantidis and Y. Avrithis, “Locally optimized product quanti-
zation for approximate nearest neighbor search,” in Proceedings of
International Conference on Computer Vision and Pattern Recog-
nition (CVPR 2014), Columbus, Ohio, June 2014, pp. 2329–2336.

[6] A. Babenko and V. Lempitsky, “Additive quantization for extreme
vector compression,” in 2014 IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 931–938.

[7] ——, “Tree quantization for large-scale similarity search and
classification,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 4240–4248.

[8] T.-A. Pham and N.-T. Do, “Embedding hierarchical clustering in
product quantization for feature indexing,” Multimedia Tools and
Applications, vol. 78, no. 1, pp. 9991–10 012, 2018.

[9] V.-H. Le, T.-A. Pham, and D.-N. Le, “Hierarchical product quan-
tization for effective feature indexing,” in IEEE 26th International
Conference on Telecommunications (ICT 2019), 2019, pp. 385–389.

[10] T.-A. Pham, D.-N. Le, and T.-L.-P. Nguyen, “Product sub-vector
quantization for feature indexing,” Journal of Computer Science
and Cybernetics, vol. 35, no. 1, pp. 1–15, 2018.

[11] D. Nister and H. Stewenius, “Scalable recognition with a vocab-
ulary tree,” in Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume
2, ser. CVPR’06, 2006, pp. 2161–2168.

[12] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in Proceedings of International
Conference on Computer Vision Theory and Applications, ser.
VISAPP’09, 2009, pp. 331–340.

[13] ——, “Scalable nearest neighbor algorithms for high dimensional
data,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 36, pp. 2227–2240, 2014.

[14] J. McNames, “A fast nearest-neighbor algorithm based on a prin-
cipal axis search tree,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 9, pp. 964–976, 2001.

[15] T.-A. Pham, S. Barrat, M. Delalandre, and J.-Y. Ramel, “An
efficient tree structure for indexing feature vectors,” Pattern Recog-
nition Letters, vol. 55, no. 1, pp. 42–50, 2015.

[16] T.-A. Pham, “Improved embedding product quantization,” Machine
Vision and Applications, vol. 30, no. 3, pp. 447–459, 2019.

[17] ——, “Pair-wisely optimized clustering tree for feature indexing,”
Computer Vision and Image Understanding, vol. 154, no. 1, pp.
35–47, 2017.

NGHIÊN CỨU SỰ ẢNH HƯỞNG CỦA CÁC THAM
SỐ TRONG TỐI ƯU HÓA CHỈ MỤC CHO CÁC CƠ SỞ
DỮ LIỆU LỚN

Tóm tắt: Đối sánh nhanh là một trong những bài toán
quan trọng của các ứng dụng thị giác máy bởi độ phức tạp
tính toán lớn, đặc biệt là trong các không gian đặc trưng
có số chiều lớn. Các kỹ thuật tiềm năng cho bài toán này
đã được nghiên cứu và đề xuất trước đây như tích lượng
tử (Product Quantization), thuật toán phân cụm phân cấp
(Hierarchical Clustering Decomposition). Đối với các kỹ
thuật này, một hàm khoảng cách sẽ được đề xuất để tạo
một danh sách các ứng viên tiềm năng gần nhất với đối
tượng truy vấn. Tuy nhiên, quá trình tính toán hàm khoảng
cách này thường có độ phức tạp tính toán lớn và được thực
hiện trong giai đoạn tìm kiếm (online), do vậy, làm ảnh
hưởng đến hiệu năng tìm kiếm. Trong bài báo này, chúng
tôi thực hiện các nghiên cứu trên các tham số ảnh hưởng
đến quá trình lập chỉ mục và tối ưu hóa quá trình tính toán
hàm khoảng cách. Ngoài ra, các chiến lược tìm kiếm khác

nhau cũng được thực hiện để đánh giá chất lượng của quá
trình lượng tử hóa. Các thử nghiệm đã được thực hiện và
cho thấy những kết quả nổi bật cả về chất lượng lượng tử
hóa và hiệu năng tìm kiếm.

Từ khóa: Lập chỉ mục, tìm kiếm xấp xỉ nhanh, tích
lượng tử.

Dinh-Nghiep Le has been work at Hong Duc
University as lecturer and permanent researcher
since 2012. His research interests include: fea-
ture extraction and indexing, image detection
and recognition, computer vision.

Van-Thi Hoang received his PhD thesis in
2006 from Hanoi National University of Ed-
ucation (Vietnam). He has been a lecturer at
Hong Duc University until 2017. He has since
then working at Department of Education and
Training, Thanh Hoa city.

Duc-Toan Nguyen received the Master degree
from University of Wollongong, Australia, in
2014. He has worked for Department of Indus-
try and Trade since 2014, Thanh Hoa province.
His research interests include: data mining,
computer vision and machine learning.

The-Anh Pham has been working at Hong
Duc University as a permanent researcher since
2004. He received his PhD Thesis in 2013 from
Francois Rabelais university in France. Starting
from June 2014 to November 2015, he has
worked as a full research fellow position at
Polytech’s Tours, France. His research interests
include document image analysis, image com-
pression, feature extraction and indexing, shape
analysis and representation.




