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Abstract:  In previous articles, we proposed single 

kernel and multikernel equalizers for nonlinear 

satellite channels with significant improvements in 

performance. The results demonstrated that the 

advantages of kernel equalizers over radius basis 

function neural equalizers are the ability to achieve 

overall convergence, which results in smaller output 

errors. However, the limitation of single kernel 

equalizers is that the output errors are still quite large. 

Multikernel equalizers can overcome this 

disadvantage but the calculation is quite complex. To 

simplify the computation, this paper proposes a 

multikernel equalizer based on Online Multi-Kernel 

Normal LMS, MKNLMS, algorithm. 

 

Keywords:  kernel method, kernel adaptive filters, 

multikernel equalizers. 

I.  INTRODUCTION 

Nowadays, the Orthogonal Frequency-Division 
Multiplexing (OFDM) satellite information systems 
are considered to be strong nonlinear systems. Under 
the influence of radio transmission medium, the 
nonlinearity of the channel causes the signal to be 
intercepted between the symbols, (InterSymbol 
Interferrence – ISI), and the interference between the 
subcarriers, (InterCarrier Interferrence – ICI). Signal 
predistortion techniques at the transmitters [11] or 
equalizers at the receivers can be used to eliminate 
these interferences. The proposed control algorithms 
usually use the Volterra series. These algorithms are 
respresented in high order series [8] therefore they are 
extremely complex. Over the past ten years, adaptive 
nonlinear equalizers are being used in satellite 
channels [8]. These equalizers mainly use artificial 
neural networks [8] [11] and Radial Base Function - 
RBF networks are the most commonly used method. 
RBF equalizers, with simple structures, have the 
advantage of being adequate for nonlinear channels. 

However, their most basic disadvantage is that only 
the optimal local root can be found. Therefore, the 
output errors will be very large when these equalizers 
are used in OFDM satellite information systems. To 
overcome this disadvantage, kernel equalizers have 
been proposed with the application of kernel method 
to traditional equalization algorithms for the purpose 
of simplifying computation and thus improving the 
equalization efficiency [6] [7] [9] [10].
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In this paper, we propose a new equalization 
method using multikernel technique which operates 
based on adaptive KLMS (Kernel Least Mean 
Squares) algorithm. Because this method uses the 
gradient principle therefore the computation is simple 
and effective [11]. This equalization algorithm is 
mainly based on LMS algorithm and kernel 
standardized with accepting consistent criteria for 
directory design [12]. 

Basically, the LMS multikernel algorithm is still 
based on gradient princile. However, due to the 
specificity of the multikernel, there are different 
application hypotheses. In [1], to restrain imposing 
optimal weight, the authors used a port fuction 
softmax   ( ), therefore limits the application areas 
of the equalizer. In [2], the authors developed a 
multikernel learning algorithm based on the results of 
Bach et al. 2004 [3] and the extension of Zien and Ong 
2007 [13]. The optimization tool is based on Shalev-
Shwarts and Singer 2007 [14]. This is a generic 
framework for designing and analyzing the most 
statistic gradient descent algorithm. However, they are 
not commonly used for the fuctions with strong 
convexity. Do et al. 2009 [15] proposed the Pegasos 
algorithm, which has relatively good convergence with 
small λ. The disadvantage of this algorithm is that it 
requires knowing the upper limit of the optimal root. 
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In this paper, we propose an algorithm for 
multikernel equalizers based on LMS algorithm that 
does not require the above factors to make the 
computation more simple, while the convergence rate 
will be adjusted based on the algorithm's control step 
size. The LMS multikernel algorithm makes the output 
error of the equalizer smaller than the single-kernel 
equalization, therefore it is consistent with the 
equalizers in OFDM satellite systems. 

The structure of this parer is presented as follow: 
Section 2: Kernel and properties; Section 3: 
Multikernel equalization based on LMS algorithm; 
Section 4: Equalization performance evaluation and 
Section 5: Conclusion. 

II. KENNEL AND PROPERTIES  

Firstly, kernel is defined as a function k with x, z of 
a non-emty set X satisfying the condition as below 
[11]: 

 (   )  〈 ( )  ( )〉          

Here   is a mapping from set X to Hilbert space F, 
commonly knowns as the characteristic space: 

        ( )              

Some features of the kernel fuction: 

Function            is continuous or can be 
counted, can be expanded with scalar product in 
Hilbert space F: 

 (   )  〈 ( )  ( )〉          

If and only if satisfies the positive semi-definite 
characteristic. 

Has two fuctions: 

   ( )  ∑    (    )
  
         ( )  

∑    (  
   )

  
                 

Here                       
    then: 

〈   ( )    ( )〉  ∑ ∑      (     
 )

  
   

  
     

Some common kernels [11]: 

The Gaussian kernel: 

 (   )     . 
‖   ‖ 

   /         

The polynomial kernel: 

 (   )  (〈   〉   )          

III. MULTIKERNEL EQUALIZATION BASED ON LMS 

ALGORITHM 

Consider a simple information system model in 
Figure 1, which has the effect of linear distortion 
represented by linear filter, the effect of nonlinear 
distortion represented by nonlinear filter and the 
additive noise. The input signal of each component is 
shown in Figure 1. 

 

 

Figure 1. Information system model with KLMS 
equalizer 

The equalization block can be seperated and 
demontrated as Figure 2. 

 

Figure 2. KLMS equalization model 

Assume that we have an input-output chain: 

*(     ) (     )   (     )  +   
*(     ) (     )   (     )  + 

The goal of the equalizer is to minimize the output 
error: 

 ( )   ,|     ( )| -          

Therein   ( ) is the mapping of the equalizer with 
its coefficients, w: 

  ( )                     

N is the kernel quantity of the equalizer. 

 ( )   ( )    (   ) ( )     

Here the paper develops an algorithm to calculate 
the weights of the equalizer to satisfy (8). Denote  ( ) 
is the given error at the iteration step n 

Based on given training data *(     )+  ( ) and 
the most decent method, we have: 

   ( )    [( ( )    (   ))  ( )]  

  , ( ) ( )-             

Approximate the value  , ( ) ( )-   ( ) ( ) 

This leads to the equation for updating the weights 
of the equalizer in the most decent direction: 

 ( )   (   )    ( ) ( )     

Therein  indicates the control step size of the 
algorithm. The algorithm is expressed as follow: 
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Begin:       ( )    

Step  1:   given (     ) 

  2:    ( ( ))    ( )     

  3:       ( )   ( ( ))     

  4:    ( )   ( )    ( ) ( )  
  ( )  ( ) 

  5:  given (     ) 

  Perform as step 2 to step 4; achive  ( ) 

In (12) choose the value  satisfy the below 
condition: 

    
 

    
            

To ensure that (12) always converge with 
probability equal to 1. Here      is the maximum 
eigen value of: 

   * ( )   ( )+          

Consider some special cases: 

1. When the magnitude of the input vector is large, 
the weight vector w is much varied. Therefore to solve 
the above problem we have to standardize this vector. 
The normalized LMS algorithm is constructed in the 
sense that the optimal problem is constrained as 
follows: 

The input vector  ( ), desired response  ( ) and 
the filter weight  ( )  are given. Find the weight 
vector of the equalizer  (   )  to minimize the 
Euclidean square of the difference  (   )   ( ). 
This problem is solved by using Lagrange multiplier to 
give us the update equation [4]: 

 (   )   ( )  
   ( )

‖ ( )‖  ( )     

This equation will converge with       

2. Case: when ‖ ( )‖ is small 

In this case, it will be difficult to compute (14) and 
it usually requires numerical method. A highly 
practical update method is used to overcome this 
problem [4] [5]: 

 (   )   ( )  
   ( )

  ‖ ( )‖  ( )    

Here     

Calculating based on the kernels: 

Knowing that:  ( (   ))    ( ) (   ) 

With  ( )    we have: 

 ( (   ))    ( ) (   )  

 ∑  ( )  ( ) (   ) 
            

Here 

 ( )   ( )   ∑  ( )  ( ) ( ) 
      

When using the kernels we have new sample array: 

2. ( ( )  ( ))/    . ( ( )  ( ))/3 

Function  ( ( )): 

 ( ( ))  〈   ( ( ))〉;           (18) 

The target function: 

 ( )   0| ( )   ( ( ))|
 
1   0| ( )  

〈   ( ( ))〉|
 
1               (19) 

Here we set: 

 ( )   ( )   ( ( ))          (20) 

  ( )     [ ( ) ( ( ))]        (21) 

Approximate: 

  ( )     ( ) ( ( ))         (22) 

Hence we have the weighting algorithm of the 
equalizer based on the kernels: 

 ( )   (   )    ( ) ( ( ))      (23) 

Algorithm 

Begin:      ( )    

Step 1:    ( )    ( ) ( ( )) 

    ( )    ( ) ( ( ))    ( ) ( ( )) 

   … 

    ( )   ∑  ( ) ( ( )) 
    

At each instance time n we have: 

 ( ( ))  〈 (   )  ( ( ))〉

  ∑  ( )〈 ( ( ))  ( ( ))〉

   

   

 

 〈 ∑  ( ) (     )   
   〉          (24) 

With the NLMS normalization algorithm, we have 

   
 

    
  w w 1

e i
n n x i

k x i ,x i


  

    (25) 

We then develop a sparsification multikernel 
NLMS algorithm based on a consistent basis as 
follow: 

The MKNLMS algorithm 

Input:  Data (     ) and number N 

Output: Expression   ∑    (    )
 
   , with 

       

Begin:     , n: learning step, : Parameter of 
learning step 

    Define: vector    , matrix   * + 
and the parameters of kernel function 

for        do 

  if      then 

        

  else 
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  Calculating the equalizer output:    
∑    (     ) 

    

  end if 

  Calculating the error:          

     
   

 ( ( )  ( ))
 

  Check the sparsification condition 

  if the sparsification condition is satisfied then 

  M = M + 1 

  Writ a new center       in the center list 

    *    +    *     + 

  end if 

end for 

IV. EQUALIZATION PERFORMANCE EVALUATION 

This section will show the performance of the 
proposed multikernel equalization solution based on 
the MKNLMS algorithm. The algorithm uses two 
Gaussian kernel (   ) with parameters      . MSE 
is calculated based on an arithmetic mean of 500 
executions. To see the effectiveness of the solution, we 
compare the results to traditional NLMS single kernel 
and traditional LMS solutions. 

The equalization is performed for the dynamic 
channel described by the sudden channel change in the 
500

th
 sample. The transmitter sends binary symbols 

(  )    *  + with equal probabilities, the received 
signal with       is created from       
     

     with               [11], and with 
      it will be created from         

     
with              . The channel is affected by 
AWGN noise      with 
           ( *  

 +  *  
 +⁄ )       with 

           
 . The noise power is considered 

constant as the power of the received signal increases 
due to channel change. 

The equalizer problem is to restore the transmitted 
symbol (  )    from the received symbol (  )   . In 
the information system, owing to the transmitted pilot 
symbols, we always have (  )    to adapt to the 
nonlinear equalizer. We set 
   ,                      -

  with     and 
     . 

We compare the performances of the proposed 
MKNLMS algorithm with the KNLMS and linear 
LMS algorithms. The parameter set used in 
computation is given in Table 1. The average directory 
size is  ̅       for the algorithms. 

Table 1. Setting the parameters for the equalizers to 
evaluate their performances 

LMS Step size:            

KNLMS (1)                           

KNLMS (2)                           

MKNLMS                      
                     

 

Figure 3 shows the results of the computation. 

It is clear to observe that the MKNLMS has 
domination MSE performance over KNLMS (I) in 
case of static channel. Tracking the performance of the 
KNLMS (II) after the channel changed, it can be seen 
that the use of slightly different kernel parameters 
instead of the optimal parameter causing severe 
performance degradation. The performance is even 
worse than the LMS linear adaptive equalizer. With 
changing channel, the MKNLMS exhibits good 
adaptability and quickly attains the lowest stable MSE, 
approximately 10

-1
, after about 5000 iterations 

 

Figure 3. MSE performance comparison between the 
equalizers 

V. CONCLUSION 

 

The kernel equalization method is a good solution 

for the changing nonlinear channel equalizers. To 

improve the kernel equalizers, this article introduced 

an adaptive multikernel nonlinear equalization 

solution based on the Online MKNLMS algorithm. 

The adaptive MKNLMS multikernel equalizer shows 

a significant improvement in MSE performance 

compares to nonlinear channel equalizers using single 

kernel and the ability to trace the changing channel is 

quite good. With this feature, the MKNLMS equalizer 

is adequate for the changing nonlinear satellite 

channel such as multimedia satellite channels owing 

to the ability to reduce interference and nonlinear 

distortion in these systems./. 
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