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Abstract: Nonlinear channel equalization using 
kernel equalizers is a method that has attracted 
lots of attention today due to its ability to solve 
nonlinear equalization problems effectively. 
Kernel equalizers based on Recursive Least 
Squared, K-RLS, are successful methods with 
high convergent rate and overcome the local 
optimization problem of RBF neural equalizers. 
In recent years, some simple K-LMS algorithms 
are used in nonlinear equalizers to further enhance 
the flexibility with the adaptive capability 
of equalizers and reduce the computational 
complexity. This paper proposes a new approach 
to combine the convex of two single-kernel 
adaptive equalizers with different convergent 
rates and different efficiencies in order to get the 
best kernel equalizer. This is the Gaussian multi-
kernel equalizer.

Keywords: Adaptive equalization, kernel 
equalizer, multi-kernel filter, nonlinear channel. 1

I. INTRODUCTION

Single-kernel adaptive filters are used widely 
today to identify and track the non-linear systems 
[1,2,3]. The developments of kernel adaptive 
filters enable us to solve non-linear estimation 
problems using linear structures. In this paper, 
we use kernel adaptive filters for equalizations 
of non-linear wireless channels such as satellite 
channels.

Wireless channels with their time-variant 
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parameters cause non-linear and linear distortions 
to the transmitted signal. Channel equalizers are 
used to minimize these distortions. Commonly 
channel equalizers can be considered as reverse 
filters which have characteristics must repeat the 
structure and the conversion rule of the channel. 
To execute that task, the equalizer in the receiver 
must has ability to perform the channel estimation 
using MLSE algorithms [3] with the complexity 
increases following the exponential function of 
the impulse response dimension. So far the most 
popular used equalizers are equalizers using 
neural networks such as MLP (Multi-Layer 
Perceptron), FBNN (Feed Back Neural Network), 
RBF (Radial Basis Function), RNN (Recursive 
Neural Network), SOM (Self Organization 
Mapping), the wavelet neural networks [3].

The mentioned equalizers have different 
complexities but they have a common advantage 
that is the capability of well solving the non-
linear equalization problems. However, there are 
still some issues that should be noticed [3]:

+  The neural networks are only able to find the 
local optimization, cannot solve the overall 
optimization problem due to the partial 
derivative characteristic. 

+  If the system transmits the M-QAM signals, 
the linear and non-linear distortions at the 
receiver will be a non-stop process. Therefore 
the equalizer must has two parts which are 
the time-variant linear part and the non-linear 
part results in a complex system.

+  The low convergent rate due to the complexity 
if the network structure and the training phase 
takes time.
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To solve the above problems, recently the 
single kernel adaptive filters based on common 
algorithms such as K-RLS (Kernel Recursive 
Least Squared) [1],the sliding-window K-RLS 
[4,6], the extended K-RLS [5], the standard kernel 
LMS [7,8] are proposed. In recent years, there are 
some simple K-LMS algorithms [9,10,11,12].

To further enhance the flexibility with the 
adaptive capability of equalizers and reduce 
the computational complexity, in this paper 
we propose the multi-kernel equalizer based 
on some researches about the multi-kernel 
[13,14,16,17,18,19]. The solution here is to 
combine the convex of two single-kernel 
adaptive filters with different convergent rates 
and different efficiencies in order to get the best 
equalizer. In our proposal, two simple K-LMS 
equalizers are used.

The following content will be organized as 
follows: Section 2 is about multi-kernel LMS 
adaptive algorithm; Section 3 is about multi-
kernel equalization; simulation results will be 
shown in Section 4 and Section 5 is conclusion.

II. Multi-kernel LMS Adaptive Algorithm

As mentioned above, two K-LMS filters are 
combined to build a novel equalizer, so first of all 
we present multi-kernel LMS adaptive algorithm. 
This content is refered to [3].

Consider a time-variant mapping:
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distribution of each kernel in multi-kernel 
algorithm at t, therefore how they are updated 
decides the adaptive characteristic of the 
algorithm. The parameter matrix W (with L 
elements) separates information from specific 
patterns to repeat the non-linear characteristic of 
the signal. 

Use statistical gradient to update W:
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Here µ is learning rate. We can estimate the output:

( ) ( )

( ) ( )

1

1

1

1

,

,

t
j t

t j j t
j

t
j t

j j t
j

y e x x

e x x

µ ψ ψ

µ ψ ψ

−

=

−

=

=

=

∑

∑
(4)

Use scalar multiplication feature for K-RLS 
vector values, the value <*> of the right side of  
(4) is:
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Put (5) into (4) we have output estimation:
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To simplify (6), let , ,
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The effect of using a multi-kernel combination 
in the MK-LMS algorithm is the adaptive design 

tΨ  is performed by updating , ,t jω
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 therefore the 

parameters { }
1

t

L
c

= ÷
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don’t have to be updated 

directly. The result of combining LMS update 
for W in (2) indicates that the relationship of 
estimation 

td  is a linear combination of multi-
kernel. Therefore (7) can be considered as a 
common multi-kernel rule and will be used in 
multi-kenel equalizers.
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III. Multi-kernel Equalization

Base on multi-kernel LMS adaptive angorithm 
discribed in section 2, here we build a novel multi-
kernel adaptive equalizer for nonlinear channel. 
In this paper, we limit the research in case the 
equalizer has two single-kernel. The block diagram 
of the equalizer is shown in Figure 1.

From (7), the output estimation in two kernel 
case is:
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Here µ  is the learning rate of the algorithm.

( ) ( )1 2.,. ; .,.k k  is the kernel functions of equalizers 
1 and 2.
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Figure 1. Multi-kernel equalization

In two kernel equalizer, , ,t iω


 is calculated due to 
the standard LMS [2]:
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m
t t te d y= − ∈ ℜ  is the error estimation.

The multi-kernel algorithm:
Multi-Kernel Least Mean Square algorithm – MK-LMS

Initialization: 

Dictionary: { }0D x=

Kernel set: { }1 2, , , LK k k k= 

Initial weight: 
1, 1ˆk x dω µ=     (for each kernel)

(To simplify, let ,k xω  is the corresponding weigh with kernel k and 
support vector x)

for training pair ( ),t tx d  do:

Pattern variance: min
jD x D t je x x∈← −

Predict: ( ), ,
jj

t k x t jx D k K
y k x xµ ω

∈ ∈
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Error: t t te d y← −

New characteristic

if t e D de eδ δ≥ ∧ ≥  then

Add new pattern: ( )tD D x← ∪
for all k K∈  do

Starting new weigh: , ˆ
tk x tdω µ←

end for

else

for all , jk K x D∈ ∈  do

Update: ( )
( ), , 2

,
ˆ

,j j

t j
k x k x t

t j

k x x
e

k x x
ω ω µ

ε
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+end for

end if

Perform and discard

for all jx D∈  do

Instant perform: ( ) ( ),t j G j tp x K x x←
Perform: ( ) ( ) ( ) ( )11t j t j t jP x P x p xρ ρ−← − +

end for

if Doing discard then

Discard pattern: ( ){ }:j t pD x D P x δ← ∈ ≥
end if

end for

IV. SIMULATION RESULTS

In this section, we consider the combination 
between two K-LMS algorithms and the Gaussian 
kernel with different bandwiths. The equalizer 
uses the MK-LMS algorithms discribed in section 
3, here called ComKAF. A non-linear system 
used in the simulation is described as follow:

( ) ( )( ) ( )

( )( ) ( ) ( )( )

2

2

0,8 0,5exp 1 1

0,3 0,9exp 1 2 0,1sin 1

d n d n d n

d n d n d n π

 = − − − −
 

 − + − − − + −
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(10)

Here ( )d n : system output,
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( ) ( ) ( )1 , 2
T

u n d n d n= − −   : system input. The initial 

condition is ( ) ( )0 1 0,1d d= = . The output ( )d n  is 

affected by AWGN ( )z n  with standart deviation 
0,1σ = .

The comparison is performed between ComKAF 
which is a combination of two K-LMS algorithm 
models, two independent K-LMS algorithms, the 
MK-LMS algorithm in [15,18] and the MxKLMS 
in [20]. A consistent property is used to build the 
equalization dictionary. A consistent threshold is 
set to achieve the same length for all equalizers. 
Parameters set for each algorithm is shown in 
Table I. The parameter µ and a0 is set to 80 and 
4 respectively. The learning rate to update port 
function of the MxKLMS algorithm is 0.1. The 
experimental results are averaged for 200 Monte 
Carlo runs.

Table I. The parameters set for the equalizers

Algorithm Kernel band-
width ξ

Step size
η

Correlation 
Threshold µ

KLMS1 0,25 0,05 0,5

KLMS2 1 0,05 0,9576

MKLMS [0,25;1] 0,03 [0,5;0,9576]

MxKLMS [0,25;1] 0,15 [0,5;0,9576]

ComKAF [0,25;1] [0,05;0,05] [0,5;0,9576]

Figure 2(a) shows that the proposed algorithm 
has better performance than two independent 
KLMS: It has the high convergent rate as the 
fastest KLMS algorithm and it achieves lowest 
stable state EMSE. This is due to the adaptive 
port function enables switching between 
two independent single kernel algorithms, as 
illustrated in Figure 1. Figure 2(b) shows that if 
equally compare, the consistent thresholds are set 
in order to achieve the same dictionary length for 
all algorithms. According the compare method, 
Figure 2(a) shows that three multi-kernel methods 
achieve nearly similar performance.

(a)

(b)
Figure 2. The result of performance analysis. 

(a) The average learning curve EMSE; (b) Development of average 
combined dictionary length;

Comparing MxKLMS and ComKAF for function 
weight, figure 3 shows that the port function of 
MxKLMS does not converge to the same value 
as proposed.

Figure 3. The average curves for functional weight
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V. CONCLUSION

In this paper, we propose a flexible approach that 
combines two single adaptive kernel equalizers 
using the K-LMS algorithm. The simulation re-
sults show the ability of the equalizer in achieving 
the best equal performance compared to each 
independent single equalizer. Obviously using 
multi-kernel in building adaptive equalizers for 
non-linear channels has many advantages. Futher 
work will be about analyzing the convergence 
characteristic and consider the combination of 
more than two algorithms, possibly with K-RLS.
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