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Abstract: Independent Component Analysis (ICA) is
one of the most popular and powerful tool that has been
used widely in the field of signal processing. Due to its
complexity, implementing ICA became a challenge for
designers. In this paper, authors proposed an FPGAb-
ased ICA implementation using FastICA algorithm.
The design can process 4 audio channels with variable
length from 2° to 2> samples. The proposed implemen-
tation achieves the speed of 11.27 Mbps and can process
over 1.4 million samples per second.

Index Terms: Audio signal, ICA, FastICA algorithm,
FPGA

I. INTRODUCTION

In the field of signal processing research area, the
Independent Component Analysis (ICA) is one of the
most popular and powerful technique. ICA algorithm
and its implementations have been developed for over
half of a century, and yet it still drawn attention
from many researchers. ICA is the common method to
solve the problem of Blind Source Separation (BSS)
[1]. The principle of the ICA algorithm is the de-
correlation the signals that are of second-order statistics
using a minimum of a priori information. Furthermore,
ICA can reduce higher order statistical dependencies
between reconstructed signals. Because of this, ICA
becomes very effective for other applications beside
of BSS problem, such as speech [2], image [3], and
biomedical [4]. To conclude, ICA algorithm is best
suited for unsupervised sources separation while has
only the observation mixed signals.

According to [5], ICA algorithm has many modifica-
tion models. The original model is called Standard ICA
(sICA). There is the Convolutive ICA (fICA) model
which is a SICA with FIR filters. The fICA approaches
were applied for biomedical blind sources separation
[6]. However, both sSICA and fICA have the same issue
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that they cannot use the a prior information regarding
the shape of the signals. The temporally constrained
ICA (cICA) [7] gives the solution to overcome such an
issue. The cICA method constrains the temporal shape
of the desired and useful components. Therefore, it can
bring the prior information into the extracting process.
JADE (Joint Approximate Diagonalization of Eigen-
matrices) ICA [8] is another popular ICA method.
The primary advantage of the JADE approach is that
it can perform very effectively on a small number
of observations input signals. Informax (information
maximization) ICA has been developed by A. J. Bell
and T. J. Sejnowski [9] and its extended modification is
given by T-W. Lee et al. [10]. Infomax approach based
on the maximization of entropy in a single-layer feed-
forward neural network, it can be classified as an un-
supervised learning algorithm. The infomax algorithm
is best for separating the super-gaussian distributions
sources: “sharply peak probability density functions
with heavy tails” [10]. However, the drawback of
infomax is that it cannot separate negative kurtosis,
uniform distribution, sources. Generally, the infomax
ICA has the small range of sources separations. The
extend version of it [10] has been developed for wider
range of applications while maintaining the simplicity.
Among presented ICA methods, FastICA approach is
the hardware-friendly algorithm which first introduced
by A. Hyvirinen and E. Oja [11]. It is an approxima-
tion algorithm of standard ICA with fixed-point itera-
tions to minimize the error. FastICA method achieves
10 to 100 times faster than conventional methods of
ICA. Therefore, it becomes the most successful linear
ICA algorithm due to its strong advantages of easy to
implement and fast convergence.

Although the effectiveness of ICA has been verified
by many researchers, the software solutions cannot sat-
isfy the real-time requirement due to the complexity of
the algorithm. However, the hardware approaches have
to use approximation models leads to less accuracy in
the comparison with the standard model. As a result,
ICA implementations became a challenge for hardware
designers throughout decades. There are many VLSI
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implementations have been done [12]-[14]. According
to the comparative study of Hongtao Du et al. [15], the
VLSI solutions of ICA algorithms require extremely
efficient hardware design and sufficient IC resources.
There are many techniques and technologies have been
used such as analog CMOS, Analog-Digital mixed sig-
nal, ASICs, and FPGAs. “Each technology has its own
characteristics, and none of them can balance between
a high-density low-cost design and a shorter turnaround
development period” [15]. However, new development
in FPGAs design methodology is a promising approach
as claimed in [4] and [15].

In this paper, the authors present an FPGA-based im-
plementation using FastICA algorithm. The proposed
system can separate 4 audio channels with variable
length from 2° to 22° samples. The implementation
can perform at maximum frequency of 62 MHz. It can
process over 1.4 million samples per second. With 8-
bit audio data, the design achieves the speed of 11.27
Mbps.

The remainder of this paper is organized as follows.
Section II briefly reviews the FastICA algorithm. Sec-
tion III proposes the variable-length 4-channel FPGA
implementation. Section IV presents the experimental
results. And finally, Section V gives the conclusion of
the research.

II. BACKGROUND ALGORITHM

A. Independent Component Analysis

ICA algorithm can be defied by the statistical vari-
ables model. There are n random resources variables
S1, ..., 5, that made n random observations variables
Z1,...,ZTn. Then, it is a linear combination in the form
as can be seen in Eq. (1).

T; =a;181+a;282+ - +ainSn (Z = 1,2,...,’1’1,),
ey
where a;;(i,j = 1...n) are real coefficients. By defi-
nition, the s; is statistically independent of each other.
Thus, the goal of ICA algorithm is solving the equation
of x = As. The ICA method can be done only when

the following constraints are satisfied:

o The original sources signals are statistically inde-
pendent with each other.

o Mixing matrix A is a square matrix (source signal
and mixed signal equal) and able to inverse.

o Maximum of only one original source signal has
Gaussian distribution.

ICA algorithm performs a linear transformation y =
Wax. As a consequence, the components y;, with
¢t = 1, IN, are possible mutual independence by max-
imizing the functions measuring mutual independence
Fyj....yn (yn is the recovered signal).
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B. FastiICA

FastICA method was developed and first introduced
by A.Hyvirinen and E. Oja [11] in 1997. The algorithm
aims to reduce the complexity of the origin method
by using fixed-point approach and iteration equa-
tions. FastICA has been proved that it is a hardware-
friendly algorithm. FastICA is used for calculating the
non-Gaussian measure of mutual independence. There
are three main steps in FastICA method: Centering,
Whitening, and ICA estimation.

1) Centering: The most basic and necessary pre-
processing is to center data x. It can be done by
subtracting mean vector E{x} in order to make data
a a zero-mean variable, as shown in Eq. (2).

Tpew = ¢ — E{x}. 2)

Vector x is called centering when it has zero-mean.
The reason for centering is that the real signal always
has noises, and the most common noise it the white
noise with Gaussian distribution. Centering is how to
eliminate white noise as well as help the separation
process becomes simpler in general.

2) Whitening: Whitening x-vector is based on un-
correlated and covariance & matrix which is the
identity matrix of centered a-vector with zero-mean.
Whitening is a process that transforming the mixing
matrix A to orthogonal by multiplying V' matrix with
x-vector data as seen in Eq. (3).

z=Vux, 3

where V' denoting whitening matrix is calculated by
Eigen Value Decomposition (EVD) of the covariance
matrix. Eq. (4) gives the EVD computation.

E{zz"T} = EDET, )

where E is the orthogonal matrix of eigenvectors of
E{zzT}, and D is the diagonal matrix of its eigenval-
ves, D = diag(dy,...,d,). Now, the whitening can
be done by whitening matrix. So, A=1 = V' A is also
orthogonal, whitening is considered to solve half of the
ICA computation based on W matrix approximation
on the orthogonal space

3) ICA Estimation: To use non-gaussianity in ICA
estimation, we must have a quantitative measure of
non-gaussianity of a random variable, y. There are
two well-known aprroximation methods, negentropy
and kurtosis.

Approximating Negentropy: To measure of non-
gaussianity that is zero for a gaussian variable and
always non-negative, one often uses a definition of
differential entropy, called negentropy. Negentropy J
is defined as in Eq. (5).

J(y) = H(Ygauss) — H(y), )
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where Ygauss 15 a Gaussian random variable of the
same covariance matrix as y. Due to the above-
mentioned, negentropy has properties that alway non-
negative, and it is zero if and only if y has a Gaussian
distribution. The negentropy estimation is hard to com-
pute. Therefore, it can be approximated by the contrast
function G; as shown in Eq. (6).

p
J(y) = Y _[E{Gi(y)} - E{G:()})>, (6
i=1
The G value must be chosen to not growing too
fast. The following guide as shown in Eq. (7) helps
for choosing G.

Gy = a—lllog(cosh(alu))
Gy = —cap(~15) , ()

4
)
Gy =7

where 1 < a; < 2 are suitable constants.
Approximating Kurtosis The original measurement

of non-gaussianity is kurtosis or the fourth-order accu-

mulation. The kurtosis of y is defined by Eq. (8).

Kurt(y) = E{y*} — 3(E{y*})>. (8)

The y component in Eq. (8) is assumed the unit
variance, then the right-hand side is simplified to
E{y*} — 3. As a result, the kurtosis is simply a
normalized version of the fourth-moment E{y*}. For
a Gaussian distribution of y, the fourth-moment equals
to 3(E{y?})2. Thus, kurtosis is zero for a Gaussian
random variables. For most (but not all) non-Gaussian
random variables, kurtosis is non-zero.

III. PROPOSED IMPLEMENTATION
A. FPGA System

The implementation is built by Verilog HDL code.
The ModelSim is used for verify the funtional-
ity, then Quartus is deployed to synthesize the cir-
cuit. The system is built on Altera Stratix IV with
EP4SGX230KF40C2 FPGA chip.

FPGA Chip

PC

Computer JTAG-UART

Avalon Bus

DDR2 SD.RAM _(DDRZ SDRAM FastICA On-chip
off-chip —L Memory

M Controller IP Core
lemory

Fig. 1. FPGA system overview.

Fig. (1) gives the overview of the system. The
system is made for testing the FastICA IP Core.
Before the start of the IP Core, four different data of
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observation sources must be presented first. To do that,
the CPU in FPGA co-operates with the PC Computer
to transfer the data to DDR2 SDRAM by using the
JTAG-UART communication. The on-chip memory is
used for storing the program code of CPU. After the
transfer of sources data is completed, the CPU starts
the process of the FastICA IP Core. Then, the IP Core
aceeses to the DDR2 SDRAM to read the observation
sources data. It computes the FastICA algorithm, then
write back the result data to the SDRAM when the
process is completed. After that, the CPU uses the
JTAG-UART to write the result data back to the PC
Computer.

B. FastICA IP Core

The block diagram of the FastICA IP Core is shown
in Fig. 2. As can be seen in the figure, the process
of the IP Core can be divided into six major steps
as follows: Centering, Covariance, EVD, Whitening,
ICA Estimation, and Compute Result. There are two
DMAs, i.e. Master Read and Master Write, that help
to communicate with the Avalon Bus, and two fifos are
used for transferring the data in and out of the Core.

Centenng]—{(:ovariance)—{ EVD ]
[ I

Estimation
Compute

Result

Master
Read

sng UojeAY
sng UojeAy

Fig. 2. FastICA IP core block diagram.

First of all, the Centering module reads the data
by the Master Read to compute the mean value and
centers the whole data. The output centered-data are
both writen back to RAM by the Master Write for later
use and go directly to the Covariance module in order
to compute the covariance matrix. The EVD module
receives the covariance matrix and calculates the Eigen
vectors and Eigen values. Then, the Eigen vectors and
Eigen values are transferred to the Whitening module.
The Whitening module uses the information from EVD
module to whiten the centered-data, then writes the
whiten-data to the RAM by the Master Write. The
Whitening module also gives the whiten matrix to the
ICA Estimation module. the ICA Estimation module
needs the whiten matrix along with whiten data to
compute the W matrix. Finally, the Compute Result
module reads the centered-data from the RAM to
multiply with the W matrix from the ICA Estimation
module. The result of that multiplication is also the
result data that are written back to RAM.
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iClk iRst_n

iLength w oLength
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iData_valid . oData_valid
Centering

iData oData

8(x4) “— 1.15(x4)

Fig. 3. Top-view of Centering module.

iClk iRst_n

iLength q_‘:
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iData_valid

oDone

Covariance oData

iData

L 77,
ﬁg 1.15(x16)
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Fig. 4. Top-view of Covariance module.

1) Centering: The top-view of the Centering mod-
ule is shown in Fig. 3. The inputs are 4-channel audio
data as can be seen in the figure as the width 8(x4) of
iData. The 8-bit audio are unsigned numbers. After
centering, they become 8-bit singed numbers within
ranged of —127 to +128. By not effect on the final
result, the data are assumed to fall in the ranged of
—1 to +1. Then, 8-bit signed numbers become 1.7-
bit fixed-point signed numbers. Then, the mean value
is a 1.7-bit fixed-point signed number, too. However,
in order to increase the accuracy, the mean value and
centered-data take more 8 bits behind the dot. Then,
they become 1.15-bit fixed-point signed numbers as
can be seen in Fig. 3. The 16-bit ¢Length signal
is used for giving the total number of samples or
the length of input signal. In this paper, the FastICA
algorithm is designed with variable-length input. For
each operation of system, the FastICA can process at
least 512 samples or 2° samples corresponding to the
minimum value of ¢Length. So, the largest number
of samples can achieved up to 22° samples at input
corresponding to the maximum value of iLength.

2) Covariance: Fig. 4 gives the top-view of the
Covariance module. The module receives the centered-
data directly from the Centering module. It needs the
iLength signal to known the total number of samples
in order to compute the covariance matrix. With 4-
channel, the covariance matrix is a 4 x 4 matrix. Then,
it has 16 numbers in total which are transferred to the
next module by the oData signals. The oDone signal
triggers the process of the next module.

3) EVD: The top-view of the EVD module is
given by Fig. 5. The process of EVD module is
to compute the eigen vectors and eigen values. The
module receives covariance matrix from the i En_data
and ¢Data signals. When the process is completed,
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iClk iRst_n
_/'<L: oDone
iEn_data >
— oMatrix_E
. EVD o
iData 1.15(x16) s
) oMatrix_D
1.15(x16) >

1 150x4)

Fig. 5. Top-view of EVD module.

oDone signal is activated. With 4-channle, there are 4
eigen vectors which make the F matrix, and 4 eigen
values which make the D matrix. The oM atriz_FE and
oMatriz_D give the E and D matrices, respectively.

The block diagram of the EVD module is shown
in Fig. 6. The EVD module is based on the Jacobi
eigen value algorithm. It requires a iteration equations
to achieve the goal. Then, the Controller is used for
control the iteration process. CS Eigen module com-
putes the values for each iteration. During the process,
a Matrix Multiplication Unit (MMU) is needed to
multiply matrices. MMU is controlled by the CS Eigen
module, and it is also used for store the result for each
step.

oDone
Controller
iEn_data &
) 1 Matrix
iData e Multiplication
iDa F
Eigen ) Unit
1.15(x16) T oMatrix_E
AstHe B oMatrix_D
1.15(x4)
Fig. 6. EVD Block Diagram.
iClk iRst_n
iEn_data _r-<|7—r iData_valid )
From iMatrix_E iData_mean
EVD 7 7
s 1.15(x16) 1.15(x4) To/From
iMatrix
— Whitening s A\éalon
. 1.15(x4) i s
ToICA oEn_matrix oData_valid
Esiimation oWh_matrix oData
-

1.15(x16) ~———' 115(x4)
Fig. 7. Top-view of Whitening module.

4) Whitening: Fig. 7 shows the top-view of the
Whitening module. It uses the avalon bus signals to
communicate with DMAs in order to read the centered-
data and write the whiten-data. The whiten-data are
stored in the SDRAM at a different offset with the
centered-data. The oEn_matrix signal is asserted
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iClk iRst n
iEn_data M
From
Whiteni : : : :
ltening | jWh_matrix iData_valid P
1.15(x16) ICA Avalon
To oDone Estimation iData Bus
Compute ==
Result oMatrix_W 1.15(x4)

1.15(x16) ~—m—’

Fig. 8. Top-view of ICA Estimation module.

when the process is done. The oW h_matriz gives the
whiten matrix to the next module. The whiten matrix is
a 4x4 matrix with 1.15-bit fixed-point signed numbers.
5) ICA Estimation: As mentioned above, there are
two mainstreams approaches for the estimation pro-
cess: negentropy and kurtosis. However, kurtosis has
been proved that it is suitabled for hardware designs
in the comparison with negentropy approaches. In
kurtosis method, there are many iteration equations that
could satisfy the requirement of the algorithm. They
are pow3, tanh, gauss, and skew as can be seen in Eq.
(9), Eq. (10), Eq. (11), and Eq. (12), respectively.

w = %X(XTw)?’ — 3B ©)

w= (X *hypTan —a; Y (1 — hypTanQ)Tw)
hypTan = tanh(a; XTw)
(10)

1

w= N(X * gauss — Z (gauss’)Tw) (11)

w = %X (XTw)?

In the aboved equations of kurtosis method, N is
the number of samples, w is the decomposition matrix
which also is the goal of the algorithm, X is the data
after centering and whitening, B and a1 and gauss are
the parameters.

The tanh, Eq. (10), and gauss, Eq. (11), equations
have the high complexity that leads to sufficient re-
souces cost. The skew equation, Eq. (12) is the sim-
plest of all. However, it has been verified that cannot
achieve the requirement of accuracy. As a result, the
pow3 equation, Eq. (9) is chosen to be implemented.

Fig. 8 shows the top-view of the ICA Estimation
module. The module receives the whiten-data from
the avalon bus through DMAs. And with the whiten
matrix transferred by the :En_data and :Wh_matrix
signals, the ICA Estimation module computes the
decomposition matrix W. The W matrix is given
to the Compute Result module by the oDone and
oMatriz_W signals. The W matrix is a 4 * 4 matrix
upon the 4-channel separation application.

12)
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iClk iRst_n
: 37 : iData_valid
iEn_data iData
From ICA To/From
Estimation Compute |1 15(x4) Avalon
iMatrix_W Result oData_valid Bus
1.15(x16) oData

M 8(x4)

Fig. 9. Top-view of Compute Result module.

6) Compute Result: The top-view of the Com-
pute Result module is shown in the Fig. 9. After
receiving the decomposition W matrix by iEn_data
nad iMatriz_W signals, the Compute Result mod-
ule reads the centered-data by avalon bus signals
through DMAs. The centered-data are multiplied with
the decomposition W matrix. And the result of that
multiplication is the final result of the ICA algorithm.

Naturally, the result data are 1.15-bit fixed-point
signed numbers due to the width of both W matrix and
centered-data. However, owing to the original audio
data are 8-bit unsigned numbers, the result data that
writen back to PC Computer must be 8-bit unsigned
numbers, too. It can done by removing 8 least sig-
nificant bits of the multiplication result which has the
width of 1.15-bit fixed-point signed. Then, the result
data become 1.7-bit fixed-point signed numbers. By
considering the dot of the fixed-point doesnot exists,
equals to multiply with 27, then they are 8-bit signed
numbers. Finally, the most significant bit is reversed
(i.e. by NOT logic gate), equals to add the results with
4128 value, then the data from 8-bit signed numbers
become 8-bit unsigned numbers. After that, the results
data are transferred to the PC Computer via oData and
oData_valid signals in order to complete the whole
ICA computation.

IV. EXPERIMENTAL RESULTS

The proposed implementation is designed and ver-
ified by Verilog HDL code and Altera Stratix IV
SGX230 FPGA chip. Tab. I gives the resources re-
sults and compared with the other implementations in
[16]-[19]. The design claimed to has the maximum
frequency of 62 MHz as shown in the table. This is
maximum operation frequency of system. It is obtained
after synthesizing and building the system on FPGA by
Quartus tool. The design consumes over 9,000 memory
bits, and most of the memory resources are used for fi-
fos. In the design, all fixed-point multiplications and di-
visions along with all super mathematical computations
such as square root are built based on the CORDIC
(COordinate Rotation DIgital Computer) algorithm. By
using CORDIC, the less memory resources are needed,
and the timing performance is improved.

With the sample rates at 1,408 KHz corresponding
to 1.408 million samples per second, the width of input
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TABLE I

RESOURCES EXPERIMENTAL RESULTS COMPARED WITH OTHER IMPLEMENTATIONS.

Proposed Design [16] [17] [18] [19]
Algorithm FastICA Parallel ICA ICNN Optimized ICA Infomax
FPGA Chip Altera Xilinx Xilinx Xilinx Altera
Stratix IV SGX230 Virtex VIOOOE | Virtex XCV 812 E | Virtex II XC2V 8000 | Cyclone II C35F
No. of channel 4 N/A N/A N/A 4
Length of samples 29 to 225 6,000 500 10,000 N/A
Data width 8 N/A N/A 16 8
Sample rates (kHz) 1,408 N/A N/A 57.53 64
Slices N/A 11,318 12,271 5,500 N/A
Combinational logic 16,099 19,114 N/A N/A 16,605
Registers 10,934 6,061 N/A N/A N/A
Memory bits 9,216 N/A N/A N/A 24,576
Other resources 645 DSP block 18-bit elements N/A N/A N/A N/A
Frq. (MHz) 62 20.161 50 185.58 68

data is 8 bits, and F,, of system equals 62 MHz. The
proposed design achieves the speed of 11.27 megabits
per second (Mbps). In the comparison with other
designs, it is clear that the proposed implementation
has better timing performances. The strong advantages
of the design is the variable sample-length from 2°
to 225 samples for each processing. With the common
audio sampling rate of 44.1 kHz, the proposed design
can separate an audio wave that has the length about
11.61 millisecond to 12 minutes 40.87 second.

The results data are compared with the ideal results
extracted from the MATLab software tool. The MSE
(Mean Square Error) is deployed to quantitive the
comparison. The implementation results have been
tested under various length and audio samples. After
all, the average MSE value approximately equals to
le — 3.

V. CONCLUSION

A variable-length 4-channel FPGA-based implemen-
tation has been presented in this paper. The system
is built on Altera Stratix IV SGX230 FPGA chip for
the verification. FastICA algorithm is chosen for the
implementation along with the pow3 kurtosis equation.
The proposed design can separate 4-channel with the
length vary from 29 to 22° samples for each time of
processing. The experimental results show that the im-
plementation achieves maximum frequency of 62 MHz
with the speed of 11.27 Mbps. The design claimed
to process over 1.4 million samples per second with
8-bit resolution input audio wave. The proposed im-
plementation uses CORDIC algorithm to compute the
fixed-point multiplications and divisions along with su-
per mathematical computation. By deploying CORDIC
method, system reduces the memory resources also
with improves the timing performances. The results are
compared with the ideal results from MATLab in order
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to quantitive the accuracy of the implementation. And
the MSE value it achieves is approximated to le — 3.
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