
IMPROVING PERFORMANCE OF
SEQUENTIAL RULE MINING WITH

PARALLEL COMPUTING
Nguyen Thon Da* and Tan Hanh+

* Khoa Hệ thống thông tin, Trường Đại học Kinh tế - Luật, ĐHQG TP. HCM
+ Học Viện Công Nghệ Bưu Chính Viễn Thông

 Abstract: Aiming to improve the performance of
sequential rules mining algorithm for the large-scale
data sets, this paper presents parallel algorithms for
mining sequential rules which directly using MPJ
Express for passing message base on multicore
configuration and cluster configuration (master-slave
structural model). Results analysis showed that the
mining time of the parallel algorithms (both multicore
and cluster model) which proposed in this paper have
better performances compared with the sequential
state-of-art algorithm.

Keywords MPI, MPJ Express, Sequential Rule,
Association Rule, Parallel Computing, High Performance.

I. INTRODUCTION

Sequential pattern mining has many real-life
applications since data is encoded as sequences in
many fields such as bioinformatics, e-learning, market
basket analysis, text analysis, and webpage click-
stream analysis. This is a very active research topic,
where hundreds of papers present new algorithms and
applications each year, including numerous
extensions of sequential pattern mining for specific
needs. The task of sequential pattern mining has many
applications. A first important limitation of the
traditional problem of sequential pattern mining is
that a huge number of patterns may be found by the
algorithms, depending on a database’s characteristics
and how the minsup threshold is set by users. Finding
too many patterns is an issue because users typically
do not have much time to analyze a large amount of
patterns.

A good solution for this is sequential rule mining.
Sequential rule mining is a variation of the sequential
pattern mining problem where sequential rules of the
form X → Y are discovered, indicating that if some
items X appear in a sequence it will be followed by
some other items Y with a given confidence.

The concept of a sequential rule is similar to that
of association rules excepts that it is required that X
must appear before Y according to the sequential
ordering, and that sequential rules are mined in
sequences rather than transactions. Sequential rules
address an important limitation of sequential pattern
mining, which is that although some sequential
patterns may appear frequently in a sequence
database, the patterns may have a very low
confidence and thus be worthless for decision-making
or prediction.

In this paper, in order to improve the performance
of sequential rule mining algorithms, we chose
ERMiner to investigate because recently it has
become a state-of-art sequential rule mining algorithm
comparing to other ones. In next section, we will
discuss clearer about this. We propose two models to
improve performance of ERMiner algorithm in terms
of time execution by using MPJ Express [1] : (1) M-
ERMiner (Multicore model for ERMiner algorithm)
and (2) C-ERMiner (Cluster model for ERMiner
algorithm).

II. RELATED WORKS

The authors of the paper [2] proposed an
algorithm based on a distributed application data
framework and does not need to create an overall FP-
tree. This can avoid the problem that the overall. FP-
tree may become too large to be created in RAM. The
algorithm uses parallel processing in all its principal
steps. It can greatly improve the efficiency and
processing ability of the association-rule mining
algorithm. It is suitable for association-rule mining on
massive data sets which the traditional FP-growth
algorithm cannot handle. Their experiments have
shown that this algorithm is faster than the FP-growth
algorithm for association-rule mining on problems at
the same data scale.

The work [3] presented three parallel algorithms
for this task based on the Apriori approach. They
consist of the Count distribution algorithm, the Data

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 80

mailto:dant@uel.edu.vn

distribution algorithm and the Candidate algorithm.
The authors studied the above trade-offs and
evaluated the relative performance of the three
algorithms by implementing them on 32-node SP2
parallel machine. The Count distribution emerged as
the algorithm of choice. It exhibited linear scaleup
and excellent speedup and sizeup behavior. When
using N processors, the overhead was less than 7.5%
compared to the response time of the serial algorithm
executing over 1/N amount of data.

The authors of [4] proposed parallel algorithms
for the discovery of association rules. The algorithms
use novel itemset clustering techniques to
approximate the set of potentially maximal frequent
itemsets. Using the above techniques they introduced
four new algorithms. The Par-Eclat (equivalence
class, bottom-up search) and Par-Clique (maximal
clique, bottom-up search) algorithms, discover all
frequent itemsets, while the Par-MaxEclat
(equivalence class, hybrid search) and Par-MaxClique
(maximal clique, hybrid search) discover the maximal
frequent itemsets. They implemented the algorithms
on a 32 processor DEC cluster interconnected with
the DEC Memory Channel network, and compared it
against a well-known parallel algorithm Count
Distribution [3]. Their experimental results indicate
that a substantial performance improvement is
obtained using their techniques.

The authors of [5] proposed the parallel algorithm
called MLFPT, for mining frequent patterns without
candidate generation. Their experiments showed that
with I/O adjusted, the MLFPT algorithm could
achieve an encouraging many-fold speedup
improvement. The implementation of their algorithm
and the experiments conducted were on a shared
memory and shared hard drive architecture.

The work [6] presented parallel Data Mining
architecture for large volume of data which eventually
scanning billions of rows of data per record. The
authors of this paper compare the different parallel
algorithms for Association Rule Mining and discuss
the advantages and disadvantages of each method.
They also compare the computational time of serial
and parallel algorithms for Association Rule Mining.

However, models based on Association Rules
have many backwards. Costly, for example,
especially when there exist a large number of patterns
and/or long patterns. Moreover, they was built
prediction lossy models from training sequences.
Thus, they do not use all the information available in
training sequences for making predictions. Besides, if
applied on data with time or sequential ordering
information, this information will be ignored.

In the next section, we will present the approach
of sequential rules mining then we also introduce a
parallel method for it.

III. THE METHOD OF SEQUENTIAL RULES
MINING

There are many algorithms proposed for mining
sequential rules:

 CMDeo [7]: A main drawback of CMDeo is that
it can generate a huge amount of candidates. A better
algorithm, the CMRules algorithm was proposed [7].
It was shown to be much faster than CMDeo for
sparse datasets. Moreover, the RuleGrowth [8], an
algorithm relying on a pattern-growth approach to
avoid candidate generation was proposed. It was
shown to be more than an order of magnitude faster
than CMDeo and CMRules. However, for datasets
containing dense or long sequences, the performance
of RuleGrowth rapidly deterioates because it has to
repeatedly perform costly database projection
operations.

Authors of proposed the ERMiner (Equivalence
class based sequential Rule Miner) algorithm. It relies
on a vertical representation of the database to avoid
performing database projection and the novel idea of
explorating the search space of rules using
equivalence classes of rules having the same
antecedent or consequent. Besides, it consists of a
data structure named SCM (Sparse Count Matrix) to
prune the search space.

Fig.1 depicts the core pseudocode of ERMiner.
ERMiner takes as input a sequence database SDB,
and the minsup and minconf thresholds. It first scans
the database once to build all equivalence classes of
rules of size 1 ∗ 1. Then, to discover larger rules, left
merges are performed with all left equivalence classes
by calling the leftSearch procedure. Similarly, right
merges are performed for all right equivalence classes
by calling the rightSearch procedure. In this case, the
rightSearch procedure may generate some new left-
equivalence classes because left merges are allowed
after right merges. These equivalence classes are
stored in the leftStore structure. To process these
equivalence classes, an extra loop is performed.
Finally, the algorithm returns the set of rules found
rules.

Fig. 1. The ERMiner algorithm [9]

Fig.2 depicts the pseudocode of the leftSearch
procedure. It takes as parameter an equivalence class
LE. Then, for each rule r of that equivalence class, a
left merge is performed with every other rules to
generate a new equivalence class. Only frequent rules
are kept. Moreover, it is output if a rule is valid. Then,
leftSearch is recursively called to explore each new

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 81

equivalence class generated that way. Similarly, we
have the rightSearch (see Fig. 3). The important
difference is that new left equivalences are stored in
the left store structure because their exploration is
postponed, as previously explained in the main
procedure of ERMiner.

Fig. 2: The leftSearch procedure [9]

Besides, an optimization is to use the Sparse
Count Matrix structure (SCM). This structure is built
during the first database scan and record in how many
sequences each item appears with each other items.
For example, Fig. 3 depicts the structure built for the
database of Fig. 1 (left), represented as a triangular
matrix. Consider the second row. It indicates that item
b appear with items b, c, d, e, f, g and h respectively
in 2, 1, 3, 4, 2 and 1 sequences. The SCM structure is
used for pruning the search space as follows
(implemented as the countPruning function in Fig. 3
and 2). Let be a pair of rules r, s that is considered for
a left or right merge and c, d be the items of r and s
that respectively do not appear in s and r. If the count
of c, d is less than minsup in the SCM, then the merge
does not need to be performed and the support of the
rule is not calculated. Another important optimization
is how to implement the left store structure for
efficiently storing left equivalence classes of rules
that are generated by right merges. In our
implementation, the authors of [9] use a hashmap of
hashmaps, where the first hash function is applied to
the size of a rule and the second hash function is
applied to the left itemset of the rule. This allows to
quickly find to which equivalence class belongs a rule
generated by a right merge.

Fig. 3. The rightSearch procedure [9]

Fig. 4. The Spare Count Matrix [9]

For the time complexity, the brief idea is the
following: We have a database containing n
transactions and some thresholds set by the user. The
algorithm first scan the database, which takes O(n)
time. Then the algorithm processes several
equivalence classes using either leftSearch or
rightSearch. In the worst case, the algorithm will
process all possible equivalence classes that could
exist in the database. However, generally, the minsup
threshold will be useful to reduce the search space
and the algorithm will not need to process all the
equivalence classes. The leftSearch procedure is
applied to an equivalence class containing r rules. The
leftSearch procedure will compare each pair of rules
from that equivalence classes using two for loops.
Thus, it will approximately do O(r^2) comparison.
For each pair or rules R1 and R2, if the pruning
conditions are passed, the support and confidence will
be calculated. Calculating the support and confidence
is done by comparing the list of occurrences of R1
and R2 as done in RuleGrowth [8]. The list of
occurrences are implemented as hashmaps. Thus, the
cost of this comparison is O(k), where k is the longest
list of occurrences between those of R1 and R2. Thus
globally, we can say that the complexity is roughly
exponential for processing each equivalence class
(O(r^2)). But in practice the equivalence classes are
not always very large. For rightSearch, it is similar to
leftSearch. For the overal complexity, if there are w
equivalence classes that are processed by the
algorithm, then the time complexity would be
O(w*y^2), where y is the average number of rules per
equivalence class.
IV. THE METHOD OF SEQUENTIAL RULES
MINING

In this section, we will introduction to MPI,

especially MPJExpress, in Section A, an
implementation of a parallel sequential rule mining
model based on multicore configuration, called M-
ERMiner in Section B, another model based on
cluster configuration, called C-ERMiner in Section C.

A. Introduction to MPJ Express

MPI is a communication protocol for
programming parallel computers. Both point-to-point
and collective communication are supported. MPI is a
message-passing application programmer interface,

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 82

together with protocol and semantic specifications for
how its features must behave in any implementation.
MPI's goals are high performance, scalability, and
portability. MPI remains the dominant model used in
high-performance computing today [10].

MPI model have been developed in various
languages such as C/C++, Python, .NET, Java…
According to the authors of [11]: Most popular and
adopted implementations are written in C/C++ as they
are suited for a wide range of scientific and research
communities for enabling parallel applications.
However it lacks the support for heterogeneous
operating system in an integrated environment.
Though there are few MPI implementations in Python
but all of them are being utilized in specific projects
and have communication performance issues. For
future implementations Java remains an obvious
choice for developing parallel computing applications
for multi core hardware mainly because of its
diversity and features. MPI.Net is the only
implementation other than A-JUMP that provides
interoperability between different programming
languages within the Microsoft .Net framework. The
study of different grid implementations clearly shows
that MPI over Internet is a challenge because of its
volume and complexity. Among approaches using
Java, MPJ Express is a good choice.

MPJ Express is a message passing library that can
be used by programmers to run their parallel Java
applications on clusters or network of computers.
Compute clusters is common parallel platform, that is
extensively used by the High Performance Computing
(HPC) community for computing large data. MPJ
Express is necessarily a middleware that supports
communication between individual processors of
cluster. The programming model of MPJ Express is
Single Program Multiple Data (SPMD).

 In the paper [1], the authors have benchmarked
our system against various other messaging libraries
and shown that MPJ Express is able to achieve
comparable performance to other systems. There is an
overhead associated with MPJ Express pure Java
devices that can potentially be resolved by extending
the MPJ API to allow communicating data to and
from ByteBuffers. The very important contribution of
the works related to parallel Apriori algorithm based
on MPI is the development of a Java-based thread-
safe messaging system. This messaging system
coupled with Java or JOMP threads can help with
more efficiently programming parallel applications on
the emerging multi-core HPC systems. This is the
first effort to address efficient programming of
multicore HPC systems by using nested parallelism
with a Java messaging system. Moreover, a very
good feature of MPJ Express is that it provides
thread-safe communication devices that allow
multiple threads in an application to communicate
safely. The paper [12] presented two new
communication devices for MPJ Express to improve
scalability of parallel Java applications on modern
HPC systems. In particular they developed hybdev for
clusters with shared memory and multicore processors
native for using native MPI libraries from within MPJ

Express programs. With the addition
of these new device, MPJ Express users have the
option to either opt for portability - by using pure Java
device - or performance - by using the native device.
The other device, hybdev, is developed to allow
efficient and transparent execution of parallel Java
applications on clusters of shared memory or
multicore processors.

B. M-ERMiner Model (Multicore Configuration)

We modified two procedures of original
ERMinner: Algorithm 2’ and Algorithm 3’.

Algorithm 2’ is the variant of the leftSearch
procedure. It was parallelized by changes compare to
the original leftSearch procedure. Explanation for the
algorithm 2’:

Line 1: Initialize with the first process.
Line 2: If the operation running at server machine
Line 3 - Line 20: The loop find valid rules from

left equivalence classes
Line 21 - 24: Share works to processes
Line 25 - 26: Clients receive passing message

from the server machine
Thus, if we called the number of jobs be J and N

be the number of processes, we have J = (K mod N).
It means that if there are 10 lines and N = 4, it will
share groups 3, 3, 3, 1 lines for every process.

Fig.5. Algorithm 2’: leftSearch procedure (Parallel)

Algorithm 3’ is the variant of the rightSearch
procedure. It was parallelized by changes compare to
the original rightSearch procedure. Explanation for
the Algorithm 3’:

Line 1: Initialize with the first process
Line 2: If the operation running at server machine
Line 3 - Line 22: The loop find valid rules from

equivalence classes.
Line 22 - 26: Share works to processes.
Line 27 - 28: Clients receive passing message

from the server machine.

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 83

Thus, if we called the number of jobs be J and N
be the number of processes, we have J = (K mod N).
It means that if there are 14 lines and N = 4, it will
share groups 4, 4, 4, 2 lines for every process.

Fig. 6. Algorithm 3’: rightSearch procedure
(Parallel)

For the time complexity in parallel cases, we set p
is number of cores in the computer we are
considering. For LeftSearch procedure and
RightSearch procedure, if there are w equivalence
classes that are processed by the algorithm, the time
complexity would be O((w*y^2)/p), where y is the
average number of rules per equivalence class.

C. C-ERMiner Model (Cluster Configuration)
In this model, we execute M-ERMiner with

computing parallel in a network non-shared system.
We mainly investigate two kinds of cluster
configuration including niodev and hybdev using MPJ
Express in the Cluster Configuration.

(1) niodev: This a one of four communication
devices in the cluster configuration: niodev, mxdev,
hybdev and native. The Java NIO device driver
(called niodev) can be used to execute MPJ Express
programs on clusters or network of computers. Its
driver utilizes Ethernet-based interconnect to pass
message.

(2) hybdev: The hybrid device allows users plan to
execute their parallel Java application on such a
cluster of multicore computers. Hybrid device
transparently utilizes both multicore configuration
and network of computers configuration for intra-
node communication and cluster configuration (just
for NIO device) for inter-node communication,
respectively.

We utilized the M-ERMiner for parallel
computing in C-ER Model. Figure 7 shows the
network diagram of Cluster Configuration:

Fig. 7. The network diagram of Cluster
Configuration

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

(1) For M-ERMiner model:

 The hardware platform uses a laptop with the
configuration: 32GB RAM, Intel 8-core processor-i7-
4800M, CPU@2.70 GHz, 256 GB hard drive (SSD
256 MB);

(2) For C-ERMiner model:

The hardware platform uses a PC plays a role as
master machine with the configuration like that of M-
ERMiner model and 10 slave PCs.

Every slave PC has the configuration: 4 GB RAM,
Intel 4-core processor-i3-4130, CPU@3.4GHz, 200
GB hard drive.

The software environment for two above model
uses the following configuration: the operation system
is Ubuntu 14.04 LTS 64 bit, the parallel and
distributed environment is the MPJ Express v0_44,
Java development platform is the JDK 8u131;
Network environment is 1000M- LAN.

Considering the fairness of comparison, the
configuration of MPI parallel development platform is
based on open resource project Eclipse Neon.3 in
Linux.

B. Data

We investigate on real-life datasets such as SIGN,
LEVIATHAN and FIFA, MSNBC (www.philippe-
fournier-
viger.com/spmf/index.php?link=datasets.php).

SIGN: This is a dataset of sign language utterance
containing approximately 800 sequences. The original
dataset file in another format can be obtained here
with more details on this dataset.

LEVIATHAN: This dataset is a conversion of the
novel Leviathan by Thomas Hobbes (1651) as a
sequence database (each word is an item). It contains
5834 sequences and 9025 distinct items. The average

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 84

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

number of items per sequence is: 33.8. The average
number of distinct item per sequence is 26.34.

FIFA: a dataset of 20,450 sequences of click
stream data from the website of FIFA World Cup 98.
It has 2,990 distinct items (webpages). The average
sequence length is 34.74 items with a standard
deviation of 24.08 items.

MSNBC: a dataset of click-stream data. The
original dataset contains 989,818 sequences obtained
from the UCI repository.

All these real-life datasets are in SPMF format
[http://www.philippe-fournier-viger.com/spmf/]

The SPMF format is defined as follows. It is a text
file where each line represents a sequence from a
sequence database. Each item from a sequence is a
positive integer and items from the same itemset
within a sequence are separated by single spaces.
Note that it is assumed that items within a same
itemset are sorted according to a total order and that
no item can appear twice in the same itemset. The
value "-1" indicates the end of an itemset. The value
"-2" indicates the end of a sequence (it appears at the
end of each line). For example, the sample input file
as follows contains the following four lines (4
sequences).

1 -1 1 2 3 -1 1 3 -1 4 -1 3 6 -1 -2
1 4 -1 3 -1 2 3 -1 1 5 -1 -2
5 6 -1 1 2 -1 4 6 -1 3 -1 2 -1 -2
5 -1 7 -1 1 6 - 1 3 -1 2 -1 3 -1
-2

The first line represents a sequence where the
itemset {1} is followed by the itemset {1, 2, 3},
followed by the itemset {1, 3}, followed by the
itemset {4}, followed by the itemset {3, 6}. The next
lines follow the same format.

C. Evaluation

In the first experiment, we compare the
performance of sequential ERMiner [9] with that of
M-ERMiner (multicore-ERMiner). We have
performed an experiment on four datasets and
measured the execution time. In conclusion, we can
see that M-ERMiner is up to from 0.4 to 0.8 times
faster than sequential ERMiner for above datasets.

Fig. 8. Comparison of execution time of Sequential
ERMiner and Multicore ERMiner

In the second experiment, we compare the
performance of the Cluster Configuration (niodev)

with that of the Cluster Configuration (hybdev). We
have performed an experiment on four datasets and
measured the execution time. In conclusion, we
realize that Cluster Configuration (hybdev) is up to
from 2 to 5 times faster than Cluster Configuration
(niodev) for above datasets.

Fig.9. Comparison of execution time of Cluster
Configuration (niodev) and Cluster Configuration
(hybdev)

V. CONCLUSION

We present a sequential rule mining parallel
computing approach consisting of 3 main models: (1)
ERMiner in Multicore configuration, (2) ERMiner in
Cluster Configuration (niodev), (3) ERMiner in
Cluster Configuration (hybdev). The experimental
results indicate that The ERMiner in Multicore
configuration model is much better than the original
(sequential) ERMiner, ERMiner in Cluster
Configuration (hybdev) is much better than ERMiner
Cluster Configuration (niodev).

I. ADKNOWLEGMENTS

The authors thank the Center of Business
Intelligence, Faculty of Information System,
University of Economics and Law for its network of
computers environment support. Besides, we are also
be grateful to Full Professor Philippe Fournier Viger
(Director of Center of Innovative Industrial Design,
Harbin Institute of Technology (Shenzhen)) for his
helps in order that we could finish this paper.

II. REFERENCES

[1] M. Baker, B. Carpenter, and A. Shafi, "MPJ Express: towards
thread safe Java HPC," in Cluster Computing, 2006 IEEE
International Conference on, 2006, pp. 1-10: IEEE.

[2] Z.-g. Wang and C.-s. Wang, "A parallel association-rule
mining algorithm," in International Conference on Web
Information Systems and Mining, 2012, pp. 125-129: Springer.

[3] R. Agrawal and J. C. Shafer, "Parallel mining of association
rules," IEEE Transactions on knowledge and Data
Engineering, vol. 8, no. 6, pp. 962-969, 1996.

[4] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, P. Stolorz, and
R. Musick, "Parallel algorithms for discovery of association
rules," in Scalable High Performance Computing for
Knowledge Discovery and Data Mining: Springer, 1997, pp. 5-
35.

[5] O. R. Zaïane, M. El-Hajj, and P. Lu, "Fast parallel association
rule mining without candidacy generation," in Data Mining,
2001. ICDM 2001, Proceedings IEEE International
Conference on, 2001, pp. 665-668: IEEE.

[6] S. Einakian and M. Ghanbari, "Parallel implementation of
association rule in data mining," in System Theory, 2006.

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 85

http://www.philippe-fournier-viger.com/spmf/

SSST'06. Proceeding of the Thirty-Eighth Southeastern
Symposium on, 2006, pp. 21-26: IEEE.

[7] P. Fournier-Viger, U. Faghihi, R. Nkambou, and E. M. Nguifo,
"CMRules: Mining sequential rules common to several
sequences," Knowledge-Based Systems, vol. 25, no. 1, pp. 63-
76, 2012.

[8] P. Fournier-Viger, R. Nkambou, and V. S.-M. Tseng,
"RuleGrowth: mining sequential rules common to several
sequences by pattern-growth," in Proceedings of the 2011 ACM
symposium on applied computing, 2011, pp. 956-961: ACM.

[9] P. Fournier-Viger, T. Gueniche, S. Zida, and V. S. Tseng,
"ERMiner: sequential rule mining using equivalence classes,"
in International Symposium on Intelligent Data Analysis, 2014,
pp. 108-119: Springer.

[10] A. Shafi, B. Carpenter, and M. Baker, "Nested parallelism for
multi-core HPC systems using Java," Journal of Parallel and
Distributed Computing, vol. 69, no. 6, pp. 532-545, 2009.

[11] M. Hafeez, S. Asghar, U. A. Malik, A. ur Rehman, and N.
Riaz, "Survey of MPI implementations," in International
Conference on Digital Information and Communication
Technology and Its Applications, 2011, pp. 206-220: Springer.

[12] A. Javed, B. Qamar, M. Jameel, A. Shafi, and B. Carpenter,
"Towards Scalable Java HPC with Hybrid and Native
Communication Devices in MPJ Express," International
Journal of Parallel Programming, vol. 44, no. 6, pp. 1142-
1172, 2016.

Thon Da Nguyen received Master
degree in Computer Science from the
University of Technology, VNU-HCM
in 2013. In November 2016, he was
accepted as a Ph.D. Student in
Information Systems at Posts and
Telecommunications Institute of
Technology, Vietnam. He is now

working as researcher and an assistant teacher at
Faculty of Information Systems, University of
Economics and Law, VNU-HCM. His research
interests include data mining, pattern mining,
sequence analysis and prediction.

Hanh Tan received the PhD degree
from Grenoble Institute of
Technology, France. Currently, he is
vice president of Posts and
Telecommunications Institute of
Technology. His research interests
are machine learning, information
retrieval, and data mining.

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 86

