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 Abstract: Aiming to improve the performance of 
sequential rules mining algorithm for the large-scale 
data sets, this paper presents parallel algorithms for 
mining sequential rules which directly using MPJ 
Express for passing message base on multicore 
configuration and cluster configuration (master-slave 
structural model). Results analysis showed that the 
mining time of the parallel algorithms (both multicore 
and cluster model) which proposed in this paper have 
better performances compared with the sequential 
state-of-art algorithm. 
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Association Rule, Parallel Computing, High Performance.  

I. INTRODUCTION 

Sequential pattern mining has many real-life 
applications since data is encoded as sequences in 
many fields such as bioinformatics, e-learning, market 
basket analysis, text analysis, and webpage click-
stream analysis. This is a very active research topic, 
where hundreds of papers present new algorithms and 
applications each year, including numerous 
extensions of sequential pattern mining for specific 
needs. The task of sequential pattern mining has many 
applications. A first important limitation of the 
traditional problem of sequential pattern mining is 
that a huge number of patterns may be found by the 
algorithms, depending on a database’s characteristics 
and how the minsup threshold is set by users. Finding 
too many patterns is an issue because users typically 
do not have much time to analyze a large amount of 
patterns. 

A good solution for this is sequential rule mining. 
Sequential rule mining is a variation of the sequential 
pattern mining problem where sequential rules of the 
form X → Y are discovered, indicating that if some 
items X appear in a sequence it will be followed by 
some other items Y with a given confidence. 

 

The concept of a sequential rule is similar to that 
of association rules excepts that it is required that X 
must appear before Y according to the sequential 
ordering, and that sequential rules are mined in 
sequences rather than transactions. Sequential rules 
address an important limitation of sequential pattern 
mining, which is that although some sequential 
patterns may appear frequently in a sequence 
database, the patterns may have a very low 
confidence and thus be worthless for decision-making 
or prediction. 

In this paper, in order to improve the performance 
of sequential rule mining algorithms, we chose 
ERMiner to investigate because recently it has 
become a state-of-art sequential rule mining algorithm 
comparing to other ones. In next section, we will 
discuss clearer about this. We propose two models to 
improve performance of ERMiner algorithm in terms 
of time execution by using MPJ Express [1] : (1) M-
ERMiner (Multicore model for ERMiner algorithm) 
and (2) C-ERMiner (Cluster model for ERMiner 
algorithm). 

II. RELATED WORKS 

The authors of the paper [2]  proposed an 
algorithm based on a distributed application data 
framework and does not need to create an overall FP-
tree. This can avoid the problem that the overall. FP-
tree may become too large to be created in RAM. The 
algorithm uses parallel processing in all its principal 
steps. It can greatly improve the efficiency and 
processing ability of the association-rule mining 
algorithm. It is suitable for association-rule mining on 
massive data sets which the traditional FP-growth 
algorithm cannot handle. Their experiments have 
shown that this algorithm is faster than the FP-growth 
algorithm for association-rule mining on problems at 
the same data scale. 

The work [3] presented three parallel algorithms 
for this task based on the Apriori approach. They 
consist of the Count distribution algorithm, the Data 
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distribution algorithm and the Candidate algorithm. 
The authors studied the above trade-offs and 
evaluated the relative performance of the three 
algorithms by implementing them on 32-node SP2 
parallel machine. The Count distribution emerged as 
the algorithm of choice. It exhibited linear scaleup 
and excellent speedup and sizeup behavior. When 
using N processors, the overhead was less than 7.5% 
compared to the response time of the serial algorithm 
executing over 1/N amount of data. 

The authors of [4] proposed parallel algorithms 
for the discovery of association rules. The algorithms 
use novel itemset clustering techniques to 
approximate the set of potentially maximal frequent 
itemsets. Using the above techniques they introduced 
four new algorithms. The Par-Eclat (equivalence 
class, bottom-up search) and Par-Clique (maximal 
clique, bottom-up search) algorithms, discover all 
frequent itemsets, while the Par-MaxEclat 
(equivalence class, hybrid search) and Par-MaxClique 
(maximal clique, hybrid search) discover the maximal 
frequent itemsets. They implemented the algorithms 
on a 32 processor DEC cluster interconnected with 
the DEC Memory Channel network, and compared it 
against a well-known parallel algorithm Count 
Distribution [3]. Their experimental results indicate 
that a substantial performance improvement is 
obtained using their techniques. 
 

The authors of [5] proposed the parallel algorithm 
called MLFPT, for mining frequent patterns without 
candidate generation. Their experiments showed that 
with I/O adjusted, the MLFPT algorithm could 
achieve an encouraging many-fold speedup 
improvement. The implementation of their algorithm 
and the experiments conducted were on a shared 
memory and shared hard drive architecture. 

The work [6] presented parallel Data Mining 
architecture for large volume of data which eventually 
scanning billions of rows of data per record. The 
authors of this paper compare the different parallel 
algorithms for Association Rule Mining and discuss 
the advantages and disadvantages of each method. 
They also compare the computational time of serial 
and parallel algorithms for Association Rule Mining.  

However, models based on Association Rules 
have many backwards. Costly, for example, 
especially when there exist a large number of patterns 
and/or long patterns. Moreover, they was built 
prediction lossy models from training sequences. 
Thus, they do not use all the information available in 
training sequences for making predictions. Besides, if 
applied on data with time or sequential ordering 
information, this information will be ignored.  

In the next section, we will present the approach 
of sequential rules mining then we also introduce a 
parallel method for it. 

III. THE METHOD OF SEQUENTIAL RULES 
MINING 

There are many algorithms proposed for mining 
sequential rules: 

 CMDeo [7]: A main drawback of CMDeo is that 
it can generate a huge amount of candidates. A better 
algorithm, the CMRules algorithm was proposed [7]. 
It was shown to be much faster than CMDeo for 
sparse datasets. Moreover, the RuleGrowth  [8], an 
algorithm relying on a pattern-growth approach to 
avoid candidate generation was proposed. It was 
shown to be more than an order of magnitude faster 
than CMDeo and CMRules. However, for datasets 
containing dense or long sequences, the performance 
of RuleGrowth rapidly deterioates because it has to 
repeatedly perform costly database projection 
operations. 

Authors of proposed the ERMiner (Equivalence 
class based sequential Rule Miner) algorithm. It relies 
on a vertical representation of the database to avoid 
performing database projection and the novel idea of 
explorating the search space of rules using 
equivalence classes of rules having the same 
antecedent or consequent. Besides, it consists of a 
data structure named SCM (Sparse Count Matrix) to 
prune the search space.  

Fig.1 depicts the core pseudocode of ERMiner. 
ERMiner takes as input a sequence database SDB, 
and the minsup and minconf thresholds. It first scans 
the database once to build all equivalence classes of 
rules of size 1 ∗ 1. Then, to discover larger rules, left 
merges are performed with all left equivalence classes 
by calling the leftSearch procedure. Similarly, right 
merges are performed for all right equivalence classes 
by calling the rightSearch procedure. In this case, the 
rightSearch procedure may generate some new left-
equivalence classes because left merges are allowed 
after right merges. These equivalence classes are 
stored in the leftStore structure. To process these 
equivalence classes, an extra loop is performed. 
Finally, the algorithm returns the set of rules found 
rules. 

 

Fig. 1. The ERMiner algorithm [9] 

Fig.2 depicts the pseudocode of the leftSearch 
procedure. It takes as parameter an equivalence class 
LE. Then, for each rule r of that equivalence class, a 
left merge is performed with every other rules to 
generate a new equivalence class. Only frequent rules 
are kept. Moreover, it is output if a rule is valid. Then, 
leftSearch is recursively called to explore each new 
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equivalence class generated that way. Similarly, we 
have the rightSearch (see Fig. 3). The important 
difference is that new left equivalences are stored in 
the left store structure because their exploration is 
postponed, as previously explained in the main 
procedure of ERMiner. 

 

Fig. 2: The leftSearch procedure [9] 

Besides, an optimization is to use the Sparse 
Count Matrix structure (SCM). This structure is built 
during the first database scan and record in how many 
sequences each item appears with each other items. 
For example, Fig. 3 depicts the structure built for the 
database of Fig. 1 (left), represented as a triangular 
matrix. Consider the second row. It indicates that item 
b appear with items b, c, d, e, f, g and h respectively 
in 2, 1, 3, 4, 2 and 1 sequences. The SCM structure is 
used for pruning the search space as follows 
(implemented as the countPruning function in Fig. 3 
and 2). Let be a pair of rules r, s that is considered for 
a left or right merge and c, d be the items of r and s 
that respectively do not appear in s and r. If the count 
of c, d is less than minsup in the SCM, then the merge 
does not need to be performed and the support of the 
rule is not calculated. Another important optimization 
is how to implement the left store structure for 
efficiently storing left equivalence classes of rules 
that are generated by right merges. In our 
implementation, the authors of [9] use a hashmap of 
hashmaps, where the first hash function is applied to 
the size of a rule and the second hash function is 
applied to the left itemset of the rule. This allows to 
quickly find to which equivalence class belongs a rule 
generated by a right merge. 

 

Fig. 3. The rightSearch procedure [9] 

 

Fig. 4. The Spare Count Matrix [9] 

For the time complexity, the brief idea is the 
following: We have a database containing n 
transactions and some thresholds set by the user. The 
algorithm first scan the database, which takes O(n) 
time. Then the algorithm processes several 
equivalence classes using either leftSearch or 
rightSearch.  In the worst case, the algorithm will 
process all possible equivalence classes that could 
exist in the database. However, generally, the minsup 
threshold will be useful to reduce the search space 
and the algorithm will not need to process all the 
equivalence classes. The leftSearch procedure is 
applied to an equivalence class containing r rules. The 
leftSearch procedure will compare each pair of rules 
from that equivalence classes using two for loops. 
Thus, it will approximately do O(r^2) comparison.  
For each pair or rules R1 and R2, if the pruning 
conditions are passed, the support and confidence will 
be calculated. Calculating the support and confidence 
is done by comparing the list of occurrences of R1 
and R2 as done in  RuleGrowth [8].  The list of 
occurrences are implemented as hashmaps. Thus, the 
cost of this comparison is O(k), where k is the longest 
list of occurrences between those of R1 and R2. Thus 
globally, we can say that the complexity is roughly 
exponential for processing each equivalence class 
(O(r^2)). But in practice the equivalence classes are 
not always very large. For rightSearch, it is similar to 
leftSearch. For the overal complexity, if there are w 
equivalence classes that are processed by the 
algorithm, then the time complexity would be 
O(w*y^2), where y is the average number of rules per 
equivalence class. 
IV. THE METHOD OF SEQUENTIAL RULES 
MINING 

 
In this section, we will introduction to MPI, 

especially MPJExpress, in Section A, an 
implementation of a parallel sequential rule mining 
model based on multicore configuration, called M-
ERMiner in Section B, another model based on 
cluster configuration, called C-ERMiner in Section C. 

A. Introduction to MPJ Express 

MPI is a communication protocol for 
programming parallel computers. Both point-to-point 
and collective communication are supported. MPI is a 
message-passing application programmer interface, 
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together with protocol and semantic specifications for 
how its features must behave in any implementation. 
MPI's goals are high performance, scalability, and 
portability. MPI remains the dominant model used in 
high-performance computing today [10].  

MPI model have been developed in various 
languages such as C/C++, Python, .NET, Java… 
According to the authors of [11]: Most popular and 
adopted implementations are written in C/C++ as they 
are suited for a wide range of scientific and research 
communities for enabling parallel applications. 
However it lacks the support for heterogeneous 
operating system in an integrated environment. 
Though there are few MPI implementations in Python 
but all of them are being utilized in specific projects 
and have communication performance issues. For 
future implementations Java remains an obvious 
choice for developing parallel computing applications 
for multi core hardware mainly because of its 
diversity and features. MPI.Net is the only 
implementation other than A-JUMP that provides 
interoperability between different programming 
languages within the Microsoft .Net framework. The 
study of different grid implementations clearly shows 
that MPI over Internet is a challenge because of its 
volume and complexity. Among approaches using 
Java, MPJ Express is a good choice. 

MPJ Express is a message passing library that can 
be used by programmers to run their parallel Java 
applications on clusters or network of computers. 
Compute clusters is common parallel platform, that is 
extensively used by the High Performance Computing 
(HPC) community for computing large data. MPJ 
Express is necessarily a middleware that supports 
communication between individual processors of 
cluster. The programming model of MPJ Express is 
Single Program Multiple Data (SPMD). 

 In the paper [1], the authors have benchmarked 
our system against various other messaging libraries 
and shown that MPJ Express is able to achieve 
comparable performance to other systems. There is an 
overhead associated with MPJ Express pure Java 
devices that can potentially be resolved by extending 
the MPJ API to allow communicating data to and 
from ByteBuffers.  The very important contribution of 
the works related to parallel Apriori algorithm based 
on MPI is the development of a Java-based thread-
safe messaging system. This messaging system 
coupled with Java or JOMP threads can help with 
more efficiently programming parallel applications on 
the emerging multi-core HPC systems. This is the 
first effort to address efficient programming of 
multicore HPC systems by using nested parallelism 
with a Java messaging system.  Moreover, a very 
good feature of MPJ Express is that it provides 
thread-safe communication devices that allow 
multiple threads in an application to communicate 
safely. The paper [12] presented two new 
communication devices for MPJ Express to improve 
scalability of parallel Java applications on modern 
HPC systems. In particular they developed hybdev for 
clusters with shared memory and multicore processors 
native for using native MPI libraries from within MPJ 

Express programs. With the addition 
of these new device, MPJ Express users have the 
option to either opt for portability - by using pure Java 
device - or performance - by using the native device. 
The other device, hybdev, is developed to allow 
efficient and transparent execution of parallel Java 
applications on clusters of shared memory or 
multicore processors.  

B. M-ERMiner Model (Multicore Configuration) 

We modified two procedures of original 
ERMinner: Algorithm 2’ and Algorithm 3’. 

Algorithm 2’ is the variant of the leftSearch 
procedure. It was parallelized by changes compare to 
the original leftSearch procedure.  Explanation for the 
algorithm 2’: 

Line 1: Initialize with the first process. 
Line 2: If the operation running at server machine 
Line 3 - Line 20: The loop find valid rules from 

left equivalence classes 
Line 21 - 24: Share works to processes 
Line 25 - 26: Clients receive passing message 

from the server machine 
Thus, if we called the number of jobs be J and N 

be the number of processes, we have J = (K mod N). 
It means that if there are 10 lines and N = 4, it will 
share groups 3, 3, 3, 1 lines for every process. 

 

 

Fig.5. Algorithm 2’: leftSearch procedure (Parallel) 

Algorithm 3’ is the variant of the rightSearch 
procedure. It was parallelized by changes compare to 
the original rightSearch procedure. Explanation for 
the Algorithm 3’:  

Line 1: Initialize with the first process 
Line 2: If the operation running at server machine 
Line 3 - Line 22: The loop find valid rules from 

equivalence classes. 
Line 22 - 26: Share works to processes. 
Line 27 - 28: Clients receive passing message 

from the server machine. 
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Thus, if we called the number of jobs be J and N 
be the number of processes, we have J = (K mod N). 
It means that if there are 14 lines and N = 4, it will 
share groups 4, 4, 4, 2 lines for every process. 

 

Fig. 6. Algorithm 3’: rightSearch procedure 
(Parallel) 

For the time complexity in parallel cases, we set p 
is number of cores in the computer we are 
considering. For LeftSearch procedure and 
RightSearch procedure, if there are w equivalence 
classes that are processed by the algorithm, the time 
complexity would be O((w*y^2)/p), where y is the 
average number of rules per equivalence class. 

C. C-ERMiner Model (Cluster Configuration) 
In this model, we execute M-ERMiner with 

computing parallel in a network non-shared system. 
We mainly investigate two kinds of cluster 
configuration including niodev and hybdev using MPJ 
Express in the Cluster Configuration. 

(1) niodev: This a one of four communication 
devices in the cluster configuration: niodev, mxdev, 
hybdev and native. The Java NIO device driver 
(called niodev) can be used to execute MPJ Express 
programs on clusters or network of computers. Its 
driver utilizes Ethernet-based interconnect to pass 
message. 

(2) hybdev: The hybrid device allows users plan to 
execute their parallel Java application on such a 
cluster of multicore computers. Hybrid device 
transparently utilizes both multicore configuration 
and network of computers configuration for intra-
node communication and cluster configuration (just 
for NIO device) for inter-node communication, 
respectively.   

We utilized the M-ERMiner for parallel 
computing in C-ER Model. Figure 7 shows the 
network diagram of Cluster Configuration: 

 

 

Fig. 7. The network diagram of Cluster 
Configuration 

IV. EXPERIMENTAL RESULTS 

A. Experimental Environment 

(1) For M-ERMiner model: 

 The hardware platform uses a laptop with the 
configuration: 32GB RAM, Intel 8-core processor-i7-
4800M, CPU@2.70 GHz, 256 GB hard drive (SSD 
256 MB);  

(2) For C-ERMiner model: 

The hardware platform uses a PC plays a role as 
master machine with the configuration like that of M-
ERMiner model and 10 slave PCs. 

Every slave PC has the configuration: 4 GB RAM, 
Intel 4-core processor-i3-4130, CPU@3.4GHz, 200 
GB hard drive. 

The software environment for two above model 
uses the following configuration: the operation system 
is Ubuntu 14.04 LTS 64 bit, the parallel and 
distributed environment is the MPJ Express v0_44, 
Java development platform is the JDK 8u131; 
Network environment is 1000M- LAN. 

Considering the fairness of comparison, the 
configuration of MPI parallel development platform is 
based on open resource project Eclipse Neon.3 in 
Linux. 

B. Data 

We investigate on real-life datasets such as SIGN, 
LEVIATHAN and FIFA, MSNBC (www.philippe-
fournier-
viger.com/spmf/index.php?link=datasets.php). 

SIGN: This is a dataset of sign language utterance 
containing approximately 800 sequences. The original 
dataset file in another format can be obtained here 
with more details on this dataset. 

LEVIATHAN: This dataset is a conversion of the 
novel Leviathan by Thomas Hobbes (1651) as a 
sequence database (each word is an item). It contains 
5834 sequences and 9025 distinct items. The average 
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number of items per sequence is: 33.8. The average 
number of distinct item per sequence is 26.34. 

FIFA: a dataset of 20,450 sequences of click 
stream data from the website of FIFA World Cup 98. 
It has 2,990 distinct items (webpages). The average 
sequence length is 34.74 items with a standard 
deviation of 24.08 items. 

MSNBC: a dataset of click-stream data. The 
original dataset contains 989,818 sequences obtained 
from the UCI repository.  

All these real-life datasets are in SPMF format 
[http://www.philippe-fournier-viger.com/spmf/] 

The SPMF format is defined as follows. It is a text 
file where each line represents a sequence from a 
sequence database. Each item from a sequence is a 
positive integer and items from the same itemset 
within a sequence are separated by single spaces. 
Note that it is assumed that items within a same 
itemset are sorted according to a total order and that 
no item can appear twice in the same itemset. The 
value "-1" indicates the end of an itemset. The value 
"-2" indicates the end of a sequence (it appears at the 
end of each line). For example, the sample input file 
as follows contains the following four lines (4 
sequences). 

1 -1 1 2 3 -1 1 3 -1 4 -1 3 6 -1 -2 
1 4 -1 3 -1 2 3 -1 1 5 -1 -2 
5 6 -1 1 2 -1 4 6 -1 3 -1 2 -1 -2 
5   -1    7    -1    1    6    -   1 3    -1    2    -1    3      -1     
-2 

The first line represents a sequence where the 
itemset {1} is followed by the itemset {1, 2, 3}, 
followed by the itemset {1, 3}, followed by the 
itemset {4}, followed by the itemset {3, 6}. The next 
lines follow the same format. 

C. Evaluation 

In the first experiment, we compare the 
performance of sequential ERMiner [9] with that of 
M-ERMiner (multicore-ERMiner). We have 
performed an experiment on four datasets and 
measured the execution time. In conclusion, we can 
see that M-ERMiner is up to from 0.4 to 0.8 times 
faster than sequential ERMiner for above datasets.  

 

Fig. 8. Comparison of execution time of Sequential 
ERMiner and Multicore ERMiner 

In the second experiment, we compare the 
performance of the Cluster Configuration (niodev) 

with that of the Cluster Configuration (hybdev). We 
have performed an experiment on four datasets and 
measured the execution time. In conclusion, we 
realize that Cluster Configuration (hybdev) is up to 
from 2 to 5 times faster than Cluster Configuration 
(niodev) for above datasets. 

 

Fig.9. Comparison of execution time of Cluster 
Configuration (niodev) and Cluster Configuration 
(hybdev) 

V.  CONCLUSION 

We present a sequential rule mining parallel 
computing approach consisting of 3 main models: (1) 
ERMiner in Multicore configuration, (2) ERMiner in 
Cluster Configuration (niodev), (3) ERMiner in 
Cluster Configuration (hybdev). The experimental 
results indicate that The ERMiner in Multicore 
configuration model is much better than the original 
(sequential) ERMiner, ERMiner in Cluster 
Configuration (hybdev) is much better than ERMiner 
Cluster Configuration (niodev). 
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