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 Abstract – Heart failure is a major global concern 

affecting millions of people. The disease is characterized 

by high mortality and significant economic burden. 

Therefore, in this study, we propose a highly accurate, 

rapid and timely model for the diagnosis of preclinical 

heart failure based on genetic biomarkers. This model 

consists of a Random Forest classifier and 10 differentially 

expressed genes selected using the particle swarm 

optimization algorithm. Our results demonstrated its 

effectiveness, with accuracy, precision, specificity, recall, 

F1-score, and AUC achieving 91.92%, 94.07%, 91.78%, 

92.09%, 93.04%, and 91.94%, respectively, on the 

GSE57345 dataset using 5-fold cross-validation. These 

findings indicate that, despite differences among patient 

groups, our model remains highly effective and can be 

applied for personalized disease prediction and precision 

medicine. 

Keywords— Heart failure, machine learning, gene 

selection, gene expression omnibus, differentially 

expressed genes. 

I. INTRODUCTION 

Currently, heart failure affects approximately 64 million 

people worldwide [1]. It is a common condition associated 

with high mortality, reduced quality of life, and significant 

economic impact. In addition, its prevalence continues to 

increase due to an aging population and improved access 

to evidence-based treatments that influence disease 

progression [2]. Heart failure arises from various causes, 

making it a complex syndrome [3]. A better understanding 

of its underlying mechanisms is essential to optimize 

management and provide personalized treatment. 

Prediction of heart failure at a preclinical stage can 

significantly improve patient outcomes by allowing for 

early interventions and lifestyle changes. Conventional 

methods of diagnosing heart failure are mainly based on 

the clinical signs and symptoms, with echocardiography 

and chest X-ray. However, these tests are inaccurate in the 

 
 

intermediate and late stages of the disease and lack clinical 

specificity and sensitivity. 

Approaches to characterizing heart failure patients include 

comprehensive, multimodal assessments ranging from 

electrocardiography and echocardiography to advanced 

imaging techniques such as cardiac magnetic resonance 

and nuclear imaging, with the recent addition of artificial 

intelligence (AI)-assisted diagnostic tools [4]. Genetic 

biomarkers are emerging as fundamental tools for both 

heart failure diagnosis and prognosis [5]. Biomarkers are 

biological molecules found primarily in blood, other body 

fluids, or tissues and typically include DNA, RNA, 

microRNA, epigenetic modifications, or antibodies. They 

have high sensitivity, specificity and positive diagnostic 

value for diseases. Heart failure is one of the diseases that 

has a complex pathophysiological process, involving many 

factors. The genotype is identified at a preclinical heart 

failure stage, which might be beneficial in delaying or 

preventing disease progression. Moreover, heart failure 

can be predicted using a single gene [6]. 

In recent years, the rapid development of high-throughput 

technologies and bioinformatics has allowed the 

simultaneous analysis of thousands of genes in different 

disease samples [7]. As a result, the use of potential 

biomarkers for diagnosis, prognosis, and personalized 

medical services has increased. Therefore, heart failure 

diagnosis has been conducted on biomarkers by numerous 

researchers. Among the earliest biomarkers used for 

detecting acute HF was B-type natriuretic peptide (BNP) 

[8]. In patients with chronic HF, Nt-proANP and Nt-

proBNP exhibit higher plasma concentrations, greater 

stability, and improved diagnostic value [9]. Studies 

indicate that assessing both adiponectin and NT-proBNP 

together provides greater accuracy compared to NT-

proBNP alone [10]. 

Furthermore, AI is a rapidly growing tool with active 

applications in the medical field [11]. With the continued 

exploration of the potential of artificial intelligence, AI-

based clinical research will lead to a paradigm shift in 

medical practice, thereby significantly improving the 

survival rate of many diseases including cancer [12]. 

Indeed, Machine Learning (ML) is transforming healthcare 

by guiding individual and population health through a 

variety of computational benefits. It contributes to patient 
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observation, disease pattern analysis, diagnosis and 

prescription of drugs, patient-centered care delivery, 

clinical error reduction, predictive scoring, treatment 

decision making, and detection of sepsis and high-risk 

emergencies in patients. 

In study [13], three ML algorithms: Least Absolute 

Shrinkage and Selection Operator (LASSO), RF, and 

Support Vector Machine Recursive Feature Elimination 

(SVM-RFE) were used to screen 14 genes related to heart 

failure aging. These genes were verified through various 

ML algorithms. 

In research [14], the authors used two ischemic heart 

failure datasets from the GEO database (GSE76701 and 

GSE21610) and identified four potential diagnostic 

candidate genes for ischemic heart failure using 

bioinformatics and machine learning algorithms, namely 

RNASE2, MFAP4, CHRDL1, and KCNN3. They 

constructed a nomogram and validated the diagnostic value 

of these genes on additional GEO datasets (GSE57338). 

Study [15] proposed a novel diagnostic model that is 

capable of predicting worsening heart failure while 

providing easy interpretation of the results. They proposed 

a threshold-based binary classifier built on a mathematical 

model derived from the Genetic Programming (GP) 

approach. The results showed that the proposed GP-based 

classifier achieved an average score of 96% for all the 

considered evaluation metrics and fully supported the 

control measures of healthcare workers. 

There is increasing evidence that aberrant gene expression 

is an important event in heart failure [16]. Differentially 

expressed genes refer to genes whose expression levels 

significantly increase or decrease between different 

conditions or groups. After comprehensive gene 

expression analyzes such as RNA-Seq or microarrays, 

differential expression analysis is performed to identify 

differentially expressed genes (DEGs). 

In the study [17], genes were tested for differential 

expression using DESeq2, and the DEGs were analyzed for 

protein-protein interactions (PPIs) and associated 

ontological pathways using Metascape. As a result, seven 

genes were identified, which were involved in two possible 

mechanisms of pain in heart failure: immune/inflammatory 

processes and atherosclerotic processes. In research [18], 

principal component analysis and hierarchical clustering 

were tested for transcriptional differences between groups, 

the impact of comorbidities, and DEG with pathway 

enrichment between heart failure and donor controls. 

Several studies have demonstrated the efficacy of 

combining DEG and ML to predict heart failure. However, 

the number of these studies is not much. In study [19], by 

using the DEGs between normal and heart failure samples 

in the Gene Expression Omnibus (GEO) database with 

circadian rhythm-related genes, differentially expressed 

circadian rhythm-related genes were obtained. The authors 

used Machine Learning (ML) to screen the feature genes, 

and diagnostic models were built based on these feature 

genes. The results demonstrated that the ML model-based 

diagnosis had higher accuracy and could perfectly 

distinguish HF patients from normal patients. In another 

study [20], the authors proposed an accurate heart failure 

diagnostic model using Random Forest (RF) and Artificial 

Neural Networks (ANN) based on DEGs in subject with or 

without heart failure. The performance of their proposed 

method was illustrated as the area under the curve (AUC) 

of the training and testing sets were 0.996 and 0.863, 

respectively. 

The identification of key genes in heart failure patients 

remains a challenge, and the potential of combining DEG 

and ML has yet to be fully explored. Therefore, in this 

study, we propose an algorithm based on public genomic 

data. By using differential gene expression analysis, we 

then use the particle swarm optimization (PSO) method to 

select potential genes from this gene set. Finally, we use 

four machine learning models, namely Random Forest 

(RF), XGBoost, Logistic regression (LR), and Support 

Vector Machine (SVM). The ML models are optimized by 

grid search cross-validation, and then trained and tested on 

different datasets. Our main contributions include: 

• Using the PSO method combined with RF to 

select the most relevant genes for diagnosing 

heart failure. 

• Proposing a set of biomarker genes to recommend 

to physicians, helping physicians gain deeper 

insights into the mechanisms of heart failure. 

• Developing a simple model combining DEG 

genes and ML models to improve the 

performance of gene-based diagnosis. 

The rest of paper follows this organizational framework, 

with the methodology outlined in Section II. Sections III 

and IV present the simulation results and discussion, 

respectively, followed by the concluding remarks in 

Section V. 

II. METHOD 

 

Figure 1: Flowchart of the proposed method 

Our proposed method includes four main steps namely data 

preprocessing, gene selection, model optimization and 



 

 

model testing, as shown in Figure 1. Firstly, in the data 

preprocessing stage, gene expression levels are computed 

to filter DEGs, and then normalized. Secondly, in step 2, 

Particle swarm optimization (PSO) method combined with 

a RF classifier is applied to find an optimal subset of DEGs. 

Thirdly, in the model optimization step, we use grid search 

with 5-fold cross-validation (CV) to optimize four ML 

models. Finally, in the model evaluation step, the optimal 

ML models are assessed on the validation set with 5-fold 

CV to evaluate their performance. 

A. Data 

Genetic datasets, including heart failure patients and 

healthy controls are collected from three datasets, namely 

GSE5406 (210 subjects) [21], GSE3586 (25 subjects) [22], 

and GSE57345 (319 subjects) [23] at the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). GSE5406 includes 

16 cases of non- heart failure, 86 cases of dilated 

cardiomyopathy, and 108 cases of ischemic heart disease. 

GSE3586 includes 15 subjects without heart failure and 13 

subjects with dilated cardiomyopathy. GSE57345 includes 

139 subjects without heart failure, 96 subjects with 

ischemic heart disease, and 84 subjects with dilated 

cardiomyopathy.  

For training, we use 238 subjects of two datasets 

(GSE5406 and GSE3586), including 31 non-heart failure 

cases and 207 heart failure cases. For validation, we use 

GSE57345 dataset, which includes 139 without heart 

failure cases and 180 with heart failure cases.  

B. Gene preprocessing  

Initially, background correction, normalization, and log2 

transformation were applied to the three heart failure raw 

datasets using R (version 4.1.2). For genes identified by 

multiple probes, the average value was calculated to 

determine their expression. After merging the datasets, the 

Bioconductor "SVA" R package was used to remove batch 

effects. Finally, genes with |log Fold Change (FC)| > 0.6, 

false discovery rate (FDR) <0.05, and an adjusted p-value 

< 0.05 were considered differentially expressed genes 

(DEGs) using the Limma package. 

C. Gene selection  

PSO [24] is used for gene selection. It is a heuristic 

optimization algorithm inspired by the social behavior of 

birds flocking or fish schooling. PSO is used to identify the 

most relevant subset of genes that enhances the 

performance of a predictive model. A subset of genes is 

represented by each particle in the swarm, which explores 

the solution space by leveraging both its own experience 

and that of neighboring particles. Through iterative 

position updates and performance evaluations of the gene 

subsets, the algorithm efficiently explores the complex 

search space to identify an optimal gene set. 

PSO is implemented with a swarm size of 30 particles, a 

maximum of 50 iterations, and an inertia weight of 0.9, 

with both the cognitive (c1) and social (c2) acceleration 

factors set to 1.5. The fitness function is based on the cross-

validated AUC score of RF model. 

D. Machine learning models 

Four machine learning models, namely Random Forest 

(RF), XGBoost, Logistic Regression (LR), and Support 

Vector Machine (SVM), are trained using two gene 

datasets (GSE5406 and GSE3586), and then tested on 

GSE57345 dataset. To improve performance in diagnosing 

heart failure disease, these models are optimized using grid 

search with 5-fold CV to find optimal models. The ML 

models are described as follows: 

Random forest [25]: RF is an ensemble learning method 

that generates an ensemble of decision trees, each trained 

on a random dataset. It is known for its robustness and 

ability to handle complex and noisy datasets. In our study, 

RF aggregates the results from multiple trees to classify 

gene expression data and identify patterns associated with 

heart failure. 

XGBoost [26]: XGBoost is a gradient boosting algorithm 

that focuses on optimizing predictive performance through 

sequential model building. It creates a series of weak 

learners and improves them iteratively by correcting the 

errors of previous models. 

Logistic regression [27]: LR is a statistical method used for 

binary classification. It models the probability that a given 

input belongs to a specific class using a logistic function 

Support Vector Machine [28]: SVM is a supervised 

learning algorithm used for classification tasks. It finds an 

optimal hyperplane that separates data points of different 

classes. It works well with high-dimensional data. 

E. Performance metrics 

We use six measures, including accuracy (Acc), precision 

(Pre), Specificity (Sp), Recall, F1-score and area under the 

curve (AUC), for the performance estimations of four ML 

models. Acc measures the proportion of correctly 

classified cases out of all subjects. Pre reflects the model's 

effectiveness in identifying only relevant instances among 

those retrieved. While Sp measures the proportion of actual 

negative cases correctly identified by the model, indicating 

its ability to correctly classify non-heart failure cases. 

Recall, also known as sensitivity, represents the proportion 

of actual positive cases correctly, reflecting its ability to 

detect heart failure cases. The F1-score is the harmonic 

mean of precision and recall, balancing both metrics to 

provide a single performance measure. AUC of the 

receiver operating characteristic curve quantifies the 

model’s ability to distinguish between heart failure and 

non-heart failure cases.  

TP TN
Acc

TP TN FP FN

+
=

+ + +
 

(1) 

TP
Pre

TP FP
=

+
 

(2) 

TN
Sp

FP TN
=

+
 

(3) 

Tuan Anh Vu, Dang Tran Le Anh, Minh Tuan Nguyen

https://www.ncbi.nlm.nih.gov/geo/


MACHINE LEARNING-BASED PREDICTION OF HEART FAILURE USING GENETIC DATA 

 

 

 

TP
Recall

TP FN
=

+
 

(4) 

2
Pre Recall

F1- score
Pre+Recall


=  

(5) 

Where TP (True Positive) represents the test result that 

correctly identifies patients with heart failure; TN (True 

Negative) represents the number of correctly identified 

subjects without heart failure disease; FP and FN represent 

cases where the test incorrectly predicts heart failure and 

non-heart failure, respectively. 

III. SIMULATION RESULTS 

A. Identification of DEGs  

After using an R library package to analyze differential 

expression with filtered parameters of |logFC| > 0.6, FDR 

< 0.05, and p-value < 0.05, the differential expression 

analysis results of the GEO dataset reveals 153 DEGs, of 

which 81 genes are down-regulated and 72 genes are up-

regulated, as shown in Figure 2. 

 

 
Figure 2: The scatter plot of log(p-value) and logFC, 

where red color represents up-regulated and blue color 

represent down-regulated  

 

B. Gene selection 

We implement the PSO algorithm in combination with the 

RF model to identify key genes from a set of 153 DEGs. 

Through this process, 10 optimal genes are selected. These 

genes are ECM2, ASPN, PTN, SFRP4, FCN3, TEAD4, 

NPTX2, LAD1, ALOX5AP, and RNASE2. 

C. Model optimization 

By applying grid search with 5-fold cross-validation, we 

obtain four optimal ML models including RF, SVM, 

XGboost and LR. The optimal hyperparameters for the RF 

model included n_estimators=78, max_depth=50, and 

min_samples_split= 2, min_samples_leaf=4. For the 

SVM, the best configuration used an RBF kernel with 

C=1.0 and gamma=0.1. The XGBoost model achieved 

optimal performance with n_estimators=100, 

learning_rate=0.01, max_depth=6, and subsample=0.8, 

improving both stability and generalization. The LR model 

performed best with C=2.0, max_iter=100, and 

penalty='l2'.  

 

D. Model validation  

To evaluate the performance of ML models on new data, 

we further validated them on the GSE57345 dataset with 

5-fold CV, with results shown in Table 1. The RF model 

demonstrated the best performance. Therefore, we choose 

RF as the model for diagnosing heart failure. 

Table 1: Performance of ML models on the validation set 

 RF XGBoost 

Acc 0.9192± 0.02 0.8818± 0.04 

Pre 0.9407± 0.02 0.8980± 0.04 

Sp 0.9178± 0.03 0.8621± 0.06 

Recall 0.9209± 0.02 0.8975± 0.03 

F1-score 0.9304± 0.01 0.8798± 0.04 

AUC 0.9194± 0.01 0.8974± 0.03 

 LR SVM 

Acc 0.8632± 0.03 0.8725± 0.03 

Pre 0.8872± 0.05 0.8980± 0.04 

Sp  0.8467± 0.06 0.8597± 0.06 

Recall 0.8767± 0.02 0.8827± 0.01 

F1-score 0.8815± 0.04 0.8900± 0.03 

AUC 0.8617± 0.04 0.8712± 0.03 

IV. DISCUSSION 

Genetic biomarkers are particularly promising in 

identifying preclinical stages of HF and providing 

personalized treatment options. In our research, we 

propose an approach that includes differential expression 

analysis, followed by the use of the PSO algorithm to 

identify potential genes for predicting heart failure. Four 

ML models are trained and tested to determine the best-

performing model.   

DEG analysis is an important related event in heart failure. 

Indeed, the analysis of gene expression data is beneficial 

for predicting heart failure patients [13]. This type of data 

offers a wealth of information that can be utilized to 

identify significant biomarkers and genetic pathways. 

Gene expression profiles are typically high-dimensional, 

with tens of thousands of genes and high correlations 

between them. DEG analysis tools are useful for 

identifying biologically significant genes with rich 

information. By using this method, we obtain 153 DEGs 

with 72 up-regulated genes and 81 down-regulated genes. 

The up-regulated 72 genes are primarily involved in 

muscle system processes, extracellular matrix 

organization, extracellular structure organization, muscle 

contraction, and cell-substrate adhesion. 81 down-

regulated genes are primarily associated with the positive 

regulation of vascular development, angiogenesis, 

neutrophil activation, L-amino acid transport, and 

neutrophil-mediated immunity [15]. 

Although DEGs also provide a lot of useful information, 

there are still many redundant genes, so we continue to 

select genes to find the most potential genes for predicting 

heart failure. In order to explore the key DEGs in heart 



 

 

failure, we use PSO algorithm with RF model to obtain 10 

potential DEGs are selected, namely ECM2 (Extracellular 

Matrix Protein 2), ASPN (Asporin), PTN (Pleiotrophin), 

SFRP4 (Secreted Frizzled-Related Protein 4), FCN3 

(Ficolin-3), TEAD4 (TEA Domain Transcription Factor 

4), NPTX2 (Neuronal Pentraxin 2), LAD1 (Ladinin 1), 

ALOX5AP (Arachidonate 5-Lipoxygenase Activating 

Protein), and RNASE2 (Ribonuclease A Family Member 

2).  The significance of these genes is shown in Table  

Table 2: Explanation of the effects of the 10 genes. 

Gene 

names 

Explanation 

ECM2 

[20] 

It is associated with immune processes  

ASPN [29] ASPN expression is induced in response 

to cardiac pressure overload or ischemia-

reperfusion. 

PTN [30] It derived from cardiac fibroblasts may 

play potential role in pressure overload-

induced hypertrophic cardiomyopathy 

through activating the PTN-SDC4 

pathway in cardiac fibroblasts and 

macrophages. 

SFRP4 

[31] 

The expression of SFRP4 in ventricular 

myocardium correlates with apoptosis 

related gene expression. 

FCN3 [32] It is related to chronic heart failure 

TEAD4 

[33] 

TEAD is a transcription factor involved in 

regulating gene expression related to cell 

proliferation and apoptosis. It is 

associated with coronary artery disease 

risk. 

NPTX2 

[34] 

It is a Protein Coding gene. Diseases 

associated with NPTX2 include 

Narcolepsy and Diabetes Insipidus, 

Neurohypophyseal. 

LAD1 [35] Diseases associated with LAD1 include 

Epidermolysis Bullosa Acquisita and 

Cicatricial Pemphigoid 

ALOX5AP 

[36] 

ALOX5AP gene variants and risk of 

coronary artery disease 

RNASE2 

[37] 

It is a possible trigger of acute-on-chronic 

inflammation leading to mRNA vaccine-

associated cardiac complication 

We fit the 10 key genes on four ML models. The result 

show that RF model achieve the best average accuracy and 

AUC with 91.92% and 91.94% on validation set, 

respectively. The AUC values are greater than 75% and the 

model also demonstrates high sensitivity and specificity, 

indicating that our diagnostic model is accurate, reliable, 

and unaffected by alterations in the cohort group. Notably, 

the reproducibility of our findings is corroborated by their 

consistency across separate datasets. Therefore, 10 key 

genes can be used as signature genes for predicting of heart 

failure. This discovery paves the way for further 

exploration of crucial mechanisms in heart failure. Indeed, 

in a previous study [30] it was demonstrated that normal 

turnover of the extracellular matrix (ECM) is regulated by 

the balance between matrix metalloproteinases (MMPs) 

and their tissue inhibitors (TIMPs). This balance is altered 

in heart failure. MMPs, TIMPs, and ECM degradation 

products have been investigated as potential diagnostic and 

prognostic biomarkers for heart failure [38].  

The comparison between our proposed method and 

existing methods is presented in Table 3. The result shows 

that the performance of our method is better than the 

performance in the study [20]. Although the method 

presented in [20] achieved higher accuracy than our results. 

However, Pre, Recall and F1-score have lower results. This 

results indicate that their proposed method did not 

correctly identify many cases of patients with heart failure. 

In additions, our model also achieved a higher AUC, 

reflecting its ability to discriminate between heart failure 

and non-heart failure cases. Besides, our results used 5-fold 

CV method, demonstrating the robustness and 

generalizability of our model across different data 

partitions. The authors in [20] proposed a heart failure 

model consisting of 16 characteristic genes (ECM2, LUM, 

ISLR, ASPN, PTN, SFRP4, GLT8D2, FRZB, FCN3, 

TEAD4, NPTX2, LAD1, ALOX5AP, RNASE2, IL1RL1, 

CD163) was constructed using machine learning and 

artificial intelligence. Although they performed 

enrichment analyses and explored immune cell infiltration, 

their approach did not involve a structured optimization of 

model parameters. While we propose RF model using 10 

potential DEGs are selected, namely ECM2, ASPN, PTN, 

SFRP4, FCN3, TEAD4, NPTX2, LAD1, ALOX5AP, and 

RNASE2 to diagnose heart failure. Our method consists of 

for main stages: gene expression analysis, gene selection 

using PSO, model optimization by grid search with 5-fold 

CV, and evaluation performance of model on the validation 

set. This multi-stage is designed to ensure optimal gene 

subset selection and robust model performance. 

Table 3: Comparison of our proposed method with existing 

work on the GSE57345 dataset 

 Acc Pre Recall F1-score AUC 

Our 0.9192 0.9407 0.9209 0.9304 0.9194 

[20] 0.995 0.893 0.826 0.842 0.863 

V. CONCLUSIONS 

Early diagnosis and treatment of patients are very 

important to reduce the morbidity and mortality of heart 

failure patients. Therefore, in this study we propose an 

accurate, efficient and reliable model for heart failure 

prediction. It consists of an RF model with 10 biomarker 

genes. Despite the differences between patient groups, our 

model is still effective and can be used for personalized 

disease prediction and precision medicine. Our results 

demonstrated this with Acc, Pre, Sp, Recall, F1-score, 

AUC of 91.92%, 94.07%, 91.78%, 92.09%, 93.04%, and 

91.94% on validation, respectively.  
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DỰ ĐOÁN SUY TIM DỰA TRÊN HỌC MÁY SỬ 

DỤNG DỮ LIỆU DI GENE 

 

Tóm tắt: Hiện nay suy tim là một vấn đề đáng quan tâm 

lớn trên toàn cầu, nó ảnh hưởng đến hàng triệu người. Bệnh 

này có đặc điểm là tỷ lệ tử vong cao và gánh nặng kinh tế 

đáng kể. Do đó, trong nghiên cứu này, chúng tôi đề xuất 

một mô hình có độ chính xác cao, nhanh chóng và kịp thời 

để chẩn đoán suy tim tiền lâm sàng dựa trên các dấu ấn sinh 

học di truyền. Mô hình này bao gồm bộ phân loại Rừng 

ngẫu nhiên (RF) và 10 gen biểu hiện khác biệt được chọn 

bằng thuật toán tối ưu hóa bầy hạt (PSO). Kết quả của 

chúng tôi đã chứng minh tính hiệu quả của nó, với độ chính 

xác (Acc), độ chính xác (Pre), độ đặc hiệu (Sp), độ thu hồi, 

điểm F1 và AUC đạt lần lượt là 91.92%, 94.07%, 91.78%, 

92.09%, 93.04%, và 91.94% trên tập dữ liệu GSE57345 

với xác thực chéo 5 lần. Những phát hiện này chỉ ra rằng, 

mặc dù có sự khác biệt giữa các nhóm bệnh nhân, mô hình 

của chúng tôi vẫn rất hiệu quả và có thể được áp dụng để 

dự đoán bệnh cá nhân hóa và y học chính xác. 

Từ khóa: Suy tim, học máy, chọn lọc gen, biểu hiện gen 

tổng hợp, gen biểu hiện khác biệt. 
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