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Abstract: In this paper, we propose a two-phase 
educational data clustering method using transfer 
learning and kernel k-means algorithms for the 
student data clustering task on a small target data 
set from a target program while a larger source 
data set from another source program is available. 
In the first phase, our method conducts a transfer 
learning process on both unlabeled target and 
source data sets to derive several new features and 
enhance the target space. In the second phase, our 
method performs kernel k-means in the enhanced 
target feature space to obtain the arbitrarily 
shaped clusters with more compactness and 
separation. Compared to the existing works, our 
work are novel for clustering the similar students 
into the proper groups based on their study 
performance at the program level. Besides, the 
experimental results and statistical tests on real 
data sets have confirmed the effectiveness of our 
method with the better clusters. 

Keywords: Educational data clustering, kernel k-
means, transfer learning, unsupervised domain 
adaptation, kernel-induced Euclidean distance 

I. INTRODUCTION 
In the educational data mining area, educational 

data clustering is among the most popular tasks due to 
its wide application range. In some existing works [4, 
5, 11-13], this clustering task has been investigated 
and utilized. Bresfelean et al. (2008) [4] used the 
clusters to generate the student’s profiles. Campagni 
et al. (2014) [5] directed their groups of students 
based on their grades and delays in examinations to 
find regularities in course evaluation. Jayabal and 
Ramanathan (2014) [11] used the resulting clusters of 
students to analyze the relationships between the 
study performance and medium of study in main 
subjects. Jovanovic et al. (2012) [12] aimed to create 
groups of students based on their cognitive styles and 
grades in an e-learning system. Kerr and Chung 
(2012) [13] focused on the key features of student 

performance based on their actions in the clusters that 
were discovered. Although the related works have 
discussed different applications, they all found the 
clustering task helpful in their educational systems. 
As for the mining techniques, it is realized that the k-
means clustering algorithm was popular in most 
related works [4, 5, 12] while the other clustering 
algorithms were less popular, e.g. the FANNY 
algorithm and the AGNES algorithm in [13] and the 
Partitional Segmentation algorithm in [11]. In 
addition, each work has prepared and explored their 
own data sets for the clustering task. There is no 
benchmark data set for this task nowadays. Above all, 
none of them has taken into consideration the 
exploitation of other data sets in supporting their task. 
It is realized that the data sets in those works are not 
very large. 

Different from the existing works, our work takes 
into account the educational data clustering task in an 
academic credit system where our students have a 
great opportunity of choosing their own learning path. 
Therefore, it is not easy for us to collect data in this 
flexible academic credit system. For some programs, 
we can gather a lot of data while for other programs, 
we can’t. In this paper, a student clustering task is 
introduced in such a situation. In particular, our work 
is dedicated to clustering the students enrolled with 
the target program, called program A. Unfortunately, 
the data set gathered with the program A is just small. 
Meanwhile, a larger data set is available with another 
source program, called program B. Based on this 
assumption, we define a solution to the clustering task 
where multiple data sets can be utilized. 

As of this moment, a few works such as [14, 20] 
have used multiple data sources in their mining tasks. 
However, their mining tasks are student classification 
[14] and performance prediction [20], not student 
clustering considered in our work. Besides, [20] was 
among a very few works proposing transfer learning 
in the educational data mining area. Voβ et al. (2015) 
[20] conducted the transfer learning process with 
Matrix Factorization for data sparseness reduction. It 
is noted that [20] is different from our work in many 
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aspects: purpose and task. Thus, their approach is 
unable to be examined in designing a solution of our 
task. 

As a solution to the student clustering task, a two-
phase educational data clustering method is proposed 
in this paper, based on transfer learning and kernel k-
means algorithms. In the first phase, our method 
utilizes both unlabeled target and source data sets in 
the transfer learning process to derive a number of 
new features. These new features are from the 
similarities between the domain-independent features 
and the domain-specific features in both target and 
source domains based on spectral clustering at the 
representation level. They also capture the hidden 
knowledge transferred from the source data set and 
thus, help increasing discriminating the instances in 
the target data set. Therefore, they are the result of the 
first phase of our method. This result is then used to 
enhance the target data set where the clustering 
process is carried out with the kernel k-means 
algorithm in the second phase of the method. In the 
second phase, the groups of similar students are 
formed in the enhanced target feature space so that 
our resulting groups can be naturally shaped in the 
enhanced target data space. They are validated with 
real data sets in comparison with other approaches 
using both internal and external validation schemes. 
The experimental results and statistical tests showed 
that our clusters were significantly better than that 
from the other approaches. That is we can determine 
the groups of similar students and also identify the 
dissimilar students in different groups. 

With this proposed solution, we hope that a 
student clustering task can help educators to group 
similar students together and further discover the 
unpleasant cases in our students early. For those in-
trouble students, we can provide them with proper 
consideration and support in time for their final 
success in study. 

The rest of our paper is organized as follows. In 
section 2, our educational data clustering task is 
defined. In section 3, we propose a two-phase 
educational data clustering method as a solution to the 
clustering task. An empirical study for an evaluation 
on the proposed method is then given in section 4. In 
section 5, a review of the related works in comparison 
with ours is presented. Finally, section 6 concludes 
this paper and introduces our future works. 

II. EDUCATIONAL DATA CLUSTERING 
TASK DEFINITION 

Previously introduced in section 1, an educational 
data clustering task is investigated in this paper. This 
task aims at grouping the similar students who are 
regular undergraduate students enrolled as full-time 
students of an educational program at a university 
using an academic credit system. The resulting groups 
of the similar students are based on their similar study 
performance so that proper care can go to each 
student group, especially the group of the in-trouble 
students who might be facing many difficult 

problems. Those in-trouble students might also fail to 
get a degree from the university and thus need to be 
identified and supported as soon as possible. 
Otherwise, effort, time, and cost for those students 
would be wasteful. 

Different from the clustering task solved in the 
existing works, the task in our work is established in 
the context of an educational program with which a 
small data set has been gathered. This program is our 
target program, named program A. On the one hand, 
such a small data set has a limited number of 
instances while characterized by a large number of 
attributes in a very high dimensional space. On the 
other hand, a data clustering task belongs to the 
unsupervised learning paradigm where unlike the 
supervised learning paradigm, only data 
characteristics are examined during the learning 
process with no prior information guide. In the 
meantime, other educational programs, named 
programs B, have been realized and operated for a 
while with a lot of available data. These facts lead to a 
situation where a larger data set from other programs 
can be taken into consideration for enhancing the task 
on a smaller data set of the program of interest. 
Therefore, we formulate our task as a transfer 
learning-based clustering task that has not yet been 
addressed in any existing works. 

Given the aforesaid purposes and conditions, we 
formally define the proposed task as a clustering task 
with the following input and output: 

For the input, let Dt denote a data set of the target 
domain containing nt instances with (t+p) features in 
the (t+p)-dimensional data vector space. Each 
instance in Dt represents a student studying the target 
educational program, i.e. the program A. Each feature 
of an instance corresponds to a subject that each 
student has to successfully complete to get the degree 
of the program A. Its value is collected from a 
corresponding grade of the subject. If the grade is not 
available at the collection time, zero is used instead. 
With this representation, the study performance of 
each student is reflected at the program level as we 
focus on the final study status of each student for 
graduation. A formal definition is given as follows. 

Dt = {Xr, ∀ r=1..nt} 

where Xr = (xr1, .., xr(t+p)) with xrd ∈ [0, 10], ∀ 
d=1..(t+p) 

In addition to Dt, let Ds denote a data set of the 
source domain containing ns instances with (s+p) 
features in the (s+p)-dimensional data vector space. 
Each instance in Ds represents a student studying the 
source educational program, i.e. the program B. Each 
feature of an instance also corresponds to a subject 
each student has to successfully study for the degree 
of the program B. Its value is also a grade of the 
subject and zero if not available once collected. Ds is 
formally defined below. 

Ds = {Xr, ∀ r=1..ns} 
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where Xr = (xr1, .., xr(s+p)) with xrd ∈ [0, 10], ∀ 
d=1..(s+p) 

In the definitions of Ds and Dt, p is the number of 
features shared by Dt and Ds. These p features are 
called pivot features in [3] or domain-independent 
features in [18]. In our educational domain, they stem 
from the subjects in common or equivalent subjects of 
the target and source programs. The remaining 
numbers of features, t in Dt and s in Ds, are the 
numbers of the so-called domain-specific features in 
Dt and Ds, respectively. Moreover, it is worth noting 
that the size of Dt is much smaller than that of Ds, i.e. 
nt << ns. 

For the output, the clusters of instances in Dt are 
returned. Each cluster includes the most similar 
instances. The instances that belong to different 
clusters should be dissimilar to each other. 
Corresponding to each cluster, a group of similar 
students is derived. These students in the same group 
share the most similar characteristics in their study 
performance. In our work, we would like to have the 
resulting clusters formed in an arbitrary shape in 
addition to the compactness of each cluster and the 
separation of the resulting clusters. This implies that 
the resulting clusters are expected to be the groups of 
students as natural as possible. 

Due to the characteristics of data gathered for the 
program A, the target program, we would like to 
enhance the target data set before the processing of 
the task in the availability of the source data set from 
program B, the source program. In particular, our 
work defines a novel two-phase educational data 
clustering method by utilizing transfer learning in the 
first phase and performing a clustering algorithm in 
the second phase. Transfer learning is intended to 
exploit the existing larger source data set for the more 
effectiveness of the clustering task on the smaller 
target data set.  

III. THE PROPOSED TWO-PHASE 
EDUCATIONAL DATA CLUSTERING 
METHOD 

In this section, we propose a two-phase 
educational data clustering method. This method has 
two phases. These two phases are sequentially 
performed. In the first phase, we embed the transfer 
learning process on both target and source data sets, 
Dt and Ds, for a feature alignment mapping to derive 
new features and make a feature enhancement on the 
target data set Dt. The transfer learning process is 
defined with normalized spectral clustering at the 
representation level of both target and source 
domains. In the second phase, we conduct the 
clustering process on the enhanced target data set Dt. 
The clustering process is done with the kernel k-
means algorithm. The proposed method results in a 
transfer learning-based kernel k-means algorithm. 

A. Method Definition 
The proposed method is defined as follows. 

For the first phase, transfer learning is conducted 
on both unlabeled target and source data sets. Based 
on the ideas and results in [18], transfer learning in 
our work is developed in a feature-based approach for 
unsupervised learning in the educational data mining 
area instead of supervised learning in the text mining 
area. Indeed, spectral feature alignment in [18] has 
helped building a new common feature space from 
both target and source data sets. This common space 
has been shown for new instances in the target 
domain to be classified effectively. It implies the 
significance of the spectral features in well 
discriminating the instances of the different classes.  

Different from [18], we don’t align all the features 
of the target and source domain along with the 
spectral features in a common space. We also don’t 
build a model on the source data set in the common 
space and then apply the resulting model on the target 
data set. For our clustering task, we align only the 
target features along with the spectral features in the 
target space so that the target space can be enhanced 
with new features. Extending a space will help us 
make the objects apart from each other more. With 
the new features which are expected to be good for 
object discrimination, the objects in the enhanced 
space can be analyzed well for similarity and 
dissimilarity or for closeness and separation. 
Therefore, we build a clustering model directly on the 
target data set in the enhanced space instead of the 
common space in the second phase. 

Because our transfer learning process is carried 
out on the educational data, the construction of a 
bipartite graph at the representation level for the texts 
in [18] can’t be considered. Alternatively, we 
combine the construction steps in [18] and the ones 
with spectral clustering in [17] for our work. 
Particularly, our underlying bipartite graph is an 
undirected weighted graph. In order to build its 
weight matrix, an association matrix M is first 
constructed in our work instead of a weight matrix in 
[18] based on co-occurrence relationships between 
words. Our association matrix M is based on the 
association of each domain-specific feature and each 
domain-independent feature. This association is 
measured via their similarity with a Gaussian kernel 
which is somewhat similar to the heat kernel in [2]. 
The resulting association matrix M is then used to 
form an affinity matrix A. This affinity matrix A plays 
a role of an adjacency matrix in spectral graph theory 
in [7], which is also a weight matrix in [7]. After that, 
a normalized Laplacian matrix LN is computed from 
the affinity matrix A and the degree matrix D for a 
derivation of the new spectral features. 

Based on the largest eigenvalues from eigen 
decomposition of the normalized Laplacian matrix 
LN, a feature alignment mapping is defined with h 
corresponding eigenvectors. These h eigenvectors 
form h new spectral features enhancing the target 
space. In order to transform each instance of the target 
data set into the enhanced target space, the feature 
alignment mapping is applied on the target data set. 
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Regarding parameter settings in the first phase, 
there are two parameters for consideration: the 
bandwidth sigma1 in the Gaussian kernel and the 
number h of the new spectral features in the enhanced 
space. After examining the heat kernel in [2], we 
realized that sigma1 is equivalent to t, which was 
stated to have little impact on the resulting 
eigenvectors. On the other hand, in [17], sigma1 was 
checked in a grid search scheme to have an automatic 
setting for spectral clustering. In our work, spectral 
clustering is for finding new features in the common 
space of the target and source domains and thus, not 
directly associated with the ultimate clusters. Hence, 
we decide to automatically derive a value for sigma1 
from the variances in the target data set. Variances are 
included because of their averaged standard 
differences in data. In addition, the target data set is 
considered instead of both target and source data sets 
because of feature enhancement on the target space, 
not on the common space. Different from the first 
parameter sigma1, the second parameter h gives us 
the extent of the hidden knowledge transferred from 
the source domain. What value is proper for this 
parameter depends on the source data set that has 
been used in transfer learning. It also depends on the 
relatedness of the target domain and source domain 
via the domain-independent feature set on which the 
new common space is based. Therefore, in our work, 
we don’t derive any value for the parameter h 
automatically from the data sets. Instead, its value is 
investigated with an empirical study in particular 
domains.  

For the second phase, kernel k-means is 
performed on the enhanced target data set. Different 
from the existing kernel k-means algorithms as 
described in [19], kernel k-means used in our work is 
defined with three following points for better 
effectiveness. 

Firstly, we establish the objective function in the 
feature space based on the enhanced target space 
instead of the original target space. That is we have 
counted the new spectral features in the feature space 
so that the implicit knowledge transferred from the 
source domain can help the clustering process 
discriminate the instances. The following is the 
objective function in our kernel k-means clustering 
process in the feature space with an implicit mapping 
function Φ. This function value is minimized iteration 
by iteration till the clusters can be shaped firmly. 

∑ ∑
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Where Xr = (xr 1, .., xr(t+p), φ(Xr)) is an instance in the 
enhanced target space. γo r is the membership of Xr 
with respect to the cluster whose center is Co: 1 if a 
member and 0 if not. Co is a cluster center in the 
feature space with an implicit mapping function Φ, 
defined as follows. 
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Using the kernel matrix with the Gaussian kernel 
function, the corresponding objective function is 
computationally defined with an implicit mapping 
function Φ as follows. 
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Where γor, γoq, γov, and γoz are memberships of the 
instances Xr, Xq, Xv, and Xz with respect to the cluster 
whose center is Co. In the kernel matrix, we can have 
Krr, Krq, and Kvz computed below: 
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Where each Euclidean distance between the instances 
is computed in the enhanced target space rather than 
the original target space. 
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Secondly, we derive a value for the bandwidth 
parameter sigma2 of the kernel function automatically 
from the variances in data instead of asking the users 
for a proper value. The foundation of this derivation is 
based on the meaning and use context of the kernel 
function value. In theory, if the kernel function is a 
covariance function used in Gaussian processes, then 
the kernel matrix can be a covariance matrix. Besides, 
in our clustering process, the kernel matrix computed 
with the Gaussian kernel function is used for 
computing distances between the instances and the 
cluster centers in the feature space. Generally 
speaking, the bandwidth parameter sigma2 scales the 
distances between two objects in the enhanced target 
space before it is considered in the feature space. If 
sigma2 is so small, the distances between two objects 
in the feature space will get constant and thus, unable 
to discriminate between the instances. If sigma2 is so 
large, the distances between two objects in the feature 
space will get close to that in the data space. Both 
cases have an impact on the resulting clusters. In our 
work, sigma2 is determined automatically from the 
variances in the target data set so that the differences 
between the instances to be clustered can be 
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considered in the mapping of the instances between 
the data and feature spaces. 

Thirdly, we reduce the randomness in 
initialization of initial clusters in kernel k-means by 
using the clusters resulted in k-means in the enhanced 
target space. The k-means clustering process provides 
us with the draft partition of the enhanced target 
space. Therefore, initialization with the clusters from 
k-means has little difference from execution to 
execution as compared to initialization with 
completely random clusters. Such a choice makes our 
method more stable while increases the computational 
cost little because k-means is one of the algorithms 
with the smallest computational cost.  

As for the convergence of kernel k-means, no 
change in the clusters formed so far will signal for the 
stability of the clustering process. We use this status 
as a termination condition. The resulting clusters in 
the feature space are in hyper-spherical shapes and 
thus, in non-hyper-spherical shapes in the data space 
when we derive the membership of each instance with 
respect to the resulting clusters in the data space. This 
fact helps us achieving the clusters of higher quality 
as compared to that from the original k-means 
algorithm. 

Corresponding to the aforementioned method 
definition, the pseudo code of the resulting transfer 
learning-based kernel k-means algorithm is given in 
Algorithm I. 

 

Algorithm I: The proposed transfer learning-based kernel k-means algorithm 

Algorithm: Transfer learning-based kernel k-means 
Input: 

Dt: a data set of the target domain containing nt instances 
Ds: a data set of the source domain containing ns instances 
t: the number of features of the target domain, called domain-specific features 
s: the number of features of the source domain, called domain-specific features 
p: the number of features in common of both source and target domains, called domain-independent 
features 
h: the number of enhanced features 
k: the number of clusters 

Output: k clusters with the cluster centers such that C = {C1, C2, .., Ck} 
Process: 
Phase 1 - Derive h enhanced features 
1.1. Construct an association matrix M showing the association of each domain-specific feature and each 

domain-independent feature: 

M = [mij] for i=1..p and j=1..(s+t) (9) 

where each i-th and j-th cell of M is calculated as follows: 
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where  ||Ai-Aj || is used for measuring the similarity between a domain-independent feature Ai and a domain-
specific feature Aj via a Euclidean distance in the data space of each domain: 
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where n is the number of source/target instances, i.e. n=ns for domain-specific features in Ds and n=nt for 
domain-specific features in Dt. 
In our method, the Gaussian function is used with sigma1 automatically derived from the variances in the data 
of Dt. 
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1.2. Form an affinity matrix A: 
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where MT is a transpose of the association matrix M.  
1.3. Compute the normalized Laplacian matrix LN:  

LN=[nlij] for i=1..(s+t+p), j=1..(s+t+p) (14) 

)*/( jjiiijij DDAnl =  (15) 

where Aij is the i-th and j-th cell in the affinity matrix A and the degree matrix D which is a diagonal matrix 
with: 

∑
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1.4. Find h eigenvectors of LN: u1, u2, …, uh that are associated with the h largest eigenvalues  
1.5. Form the transformation matrix U:  

U = [u1u2…uh] (17) 

1.6. Derive h enhanced features for each instance Xr = (xr 1, .., xr(t+p )) in Dt for r=1..nt by means of a feature 
alignment mapping φ(Xr):  

φ(Xr) = (xr1, .., xr(t+p), 0, …, 0)*U (18) 

where (0, …, 0) is a zero placeholder for s source-specific features in the mapping. Each instance Xr is returned 
as: (xr1, .., xr(t+p), φ(Xr)). 
 
Phase 2 - Generate k clusters in the enhanced target feature space where Dt is enhanced 
2.1.  Compute the kernel matrix KM each cell of which is calculated using the Gaussian function: 
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where  ||Xr-Xq || is a Euclidean distance between two instances Xr and Xq in the data space: 
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and sigma2 is derived automatically from the variances in the data of Dt 
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2.2. Initialize the cluster centers from k resulting clusters of the standard k-means algorithm on the target data 
set Dt. 

2.3.  Repeat the following actions 2.4 and 2.5 until the membership of each instance is unchanged in the feature 
space, i.e. the value of the objective function is unchanged. 

2.4. Update the distance between each cluster center Co and each instance Xr in the feature space for o=1..k and 
r=1..nt 
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where γoq, γov, and γoz are the current memberships of the instances Xq, Xv, and Xz with respect to the cluster 
center Co. 
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2.6.  Return k clusters based on the membership of each instance with respect to each cluster. 

 
B. Characteristics of the Proposed Method 

As described above, the proposed method is a 
novel solution for educational data clustering in the 
context where the target domain has a small data set 
for the task. The method conducts the transfer 
learning process on both target and source data sets 
for the new features that can enhance the target data 
space for better instance discrimination. The method 
then performs the clustering process on the target data 
set in the enhanced target feature space with kernel-
induced distances. It is worth noting that our method 
has no execution of the clustering process on the 
source data set. Such a design helped us save a lot of 
computational cost because in the context of our 
clustering task, the source data set is much larger than 
the target data set. 

Different from the existing transfer learning-based 
clustering approach, self-taught clustering in [8], our 
approach exploited the source data set at the 
representation level while Dai et al. (2008) [8]’s 
approach at the instance level. In addition, our 
approach did not perform the clustering process on 
the source data set while Dai et al. (2008) [8]’s 
approach required the clustering process on both 
source and target data sets. As based on the kernel k-
means algorithm, our approach aimed at the clusters 
in the feature space instead of in the data space as 
considered in [8].  

As compared to [16], our transfer learning 
approach is considered at the representation level 
while that in [16] at the instance level. Martín-
Wanton et al. (2013) [16] defined their unsupervised 
transfer learning method using Latent Dirichlet 
Allocation (LDA) for short text clustering. The 
method was run on both target and source data sets 
and then derived the clusters of the target data set by 
removing the source instances in the resulting clusters 
containing at least one target instance. This method 
assumed that the source and target domains shared the 
same space. This assumption is relaxed in our method 
where there exist domain-specific features. 

Different from the existing approaches to 
educational data clustering in [4, 5, 12], our method 
was based on the kernel k-means clustering algorithm 
while [4, 5, 12]’s methods were based on the k-means 
clustering algorithm. We believe that the student 
groups created from our method are of higher quality 
as non-linearly formed in the enhanced target data 
space. In addition, our method not only used one 
target data set but also exploited another source data 
set for better representation. 

In short, our work has defined a new transfer 
learning-based clustering approach in the educational 
domain. The resulting two-phase clustering method is 
expected to produce the clusters of higher quality in 
more natural shapes. This method is also a novel 
solution for grouping similar students based on their 
study performance at the program level. 

IV. EVALUATION 
For an evaluation of the proposed method, we 

conducted an empirical study with many experiments 
and numerical analysis in this section.  

A. Data and Experiment Settings 
In this work, we have implemented the proposed 

method in Matlab and Java: the first phase with 
Matlab and the second phase with Java. The resulted 
data after feature enhancement in the first phase are 
organized in the .csv files which are then processed 
by the kernel k-means clustering algorithm in the 
second phase. With that implementation, our 
experiments were carried out on a 2.2 GHz Intel Core 
i7 notebook with 6.00 GB RAM running Windows 7 
Ultimate, a 64-bit operating system.   

As previously mentioned in the educational data 
clustering task definition, our target data set is so 
smaller than other available source data set in the 
education domain. Indeed, our target data set contains 
186 instances stemming from the program in 
Computer Engineering (CE), i.e. the program A, and 
our source data set consists of 1317 instances from 
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the program in Computer Science (CS), i.e. the 
program B. These two data sets are real data sets from 
grade information of the corresponding undergraduate 
students enrolled in 2008-2009 for the program A and 

in 2005-2008 for the program B, both in the academic 
credit system at Faculty of Computer Science and 
Engineering, Ho Chi Minh City University of 
Technology, Vietnam, [1]. 

 

Table I. Details of data sets 

Educational Program Study Years Student # Class # Feature # Common Feature # 

CE (Target, A) 2, 3, 4 186 3 43 
32 

CS (Source, B) 2, 3, 4 1,317 3 43 
 

For being used in comparisons, three data sets 
were built for each program corresponding to 3 years 
of study of the aforementioned students from year 2 
to year 4: Year 2, Year 3, Year 4. The Year 2 data set 
is with the 2nd-year students, the Year 3 data set with 
the 3rd-year students, and the Year 4 data set with the 
4th-year students for both programs. Their details are 
briefly described in Table I. 

Each instance in a data set in both programs has 
43 attributes originally corresponding to 43 subjects 
and 1 class attribute whose values are either 
“graduating”, “studying”, or “study_stop” 
corresponding to the final study status of a student. 
We prepared the class attribute for external validation. 
In the real world, two programs have 32 subjects in 
common which are mainly basic subjects for general 
knowledge and English as well as fundamental 
subjects for core knowledge in the computer field. 
These 32 subjects form 32 common features between 
two domains: target and source. They are so-called 
pivot features in [3] and so-called domain-
independent features in [18]. The remainder subjects 
form domain-specific features of each domain.  

As for the processing in the first phase of the 
proposed method, different feature spaces are 
considered in this evaluation: original and enhanced. 
The original space is the one that we have described 
above. The enhanced space is the one that we have 
obtained with transfer learning between these two 
programs using spectral clustering. This enhanced 
space is generated by adding several enhanced 
features from transfer learning to the original space. 
Different numbers of enhanced features are examined 
starting from the number of classes to the higher 
numbers: {3, 6, 9, 12, 15} corresponding to {k, 2*k, 
3*k, 4*k, 5*k}. The reported results of the algorithms 
are based on the stability of the changes in validity 
indices. In addition, the bandwidth sigma1 of the 
Gaussian kernel in the transfer learning process is 
automatically determined from the variance of the 
target data set as proposed. For evaluation, we 
reported the results with different values for sigma1: 
0.03*sum_of_variances_1, 0.3*sum_of_variances_1, 
3*sum_of_variances_1, 30*sum_of_variances_1, and 
300*sum_of_variances_1 where sum_of_variances_1 
(var1 for short) is derived from the total sum of the 
variance for each instance in the target data. 

For the clustering algorithms in the second phase, 
the original k-means and kernel k-means algorithms in 
the original data space were used for comparison. The 
number of clusters k is chosen from the number of 
classes of the data sets for both k-means and kernel k-
means algorithms. It is set to 3. As for the kernel k-
means algorithm, the kernel function is the Gaussian 
kernel function for its capability of non-linear 
transformation. As earlier proposed, the bandwidth 
sigma2 of the kernel is automatically determined from 
the variance of each data set. For evaluation, different 
values for sigma2 are considered: 
0.03*sum_of_variances_2, 0.3*sum_of_variances_2, 
3*sum_of_variances_2, 30*sum_of_variances_2, and 
300*sum_of_variances_2 where sum_of_variances_2 
(var2 for short) is derived from the total sum of the 
variance for each attribute in the target data. 

For randomness avoidance in initialization, we 
used the same initial values for the clustering 
algorithms. In addition, 100 runs were carried out for 
each experiment. Averaged results are then recorded. 
Their standard deviations are also derived and 
displayed. 

For validation of the resulting clusters in each 
experiment, two validation schemes were examined: 
internal and external. For internal validation, three 
well-known measures used are: Objective Function, 
S_Dbw, and Dunn. Objective Function is used for 
checking the optimization of the partitioning 
approaches. Both S_Dbw and Dunn are used for 
examining the separation and compactness of the 
resulting clusters; but S_Dbw is more preferred with 
respect to monotonicity, noise, density, subclusters, 
and skewed distributions in data as discussed in [15]. 
For external validation, Entropy is used for its 
simplicity and popularity toward supervised learning. 
For better resulting clusters, we expect smaller values 
of Objective Function, S_Dbw, and Entropy and 
larger values of Dunn. More computing details of 
these measures can be found in [15, 21]. 

For checking significant differences in 
comparison, One-Way ANOVA was conducted with 
equal variances assumed for post hoc multiple 
comparisons with Bonferroni, LSD, and Tukey HSD 
at the 0.05 level of significance. Levene Statistic is 
also included for a test of homogeneity of variances. 
The case of 15 enhanced features for all the data sets 
is used in statistical tests. All the statistical tests show 
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the differences between the results from the proposed 
method and that from the others are significant. 

B. Experimental Results and Discussions 
In this subsection, we present the experimental 

results in two main groups: the first group for a study 
of the effectiveness of our method and the second for 
a study of the affect of the parameters in our method. 

In the first group, Table II and Table III give us 
the averaged results and their standard deviations, 
respectively, for two clustering algorithms k-means 
and kernel k-means on original data sets and enhanced 
data sets. In this group, we used 15 enhanced features, 
sigma1 = 0.3*var1, and sigma2 = 0.3*var2. The best 
averaged results are displayed in bold. It is realized 
that the proposed method with the kernel k-means 

clustering algorithm on the enhanced data sets 
outperforms the other methods, such as the methods 
with the k-means clustering algorithm on either 
original or enhanced data sets and with the kernel k-
means clustering algorithms on the original data sets. 
The effectiveness of the proposed method is reached 
on a consistent basis via all the measures: Objective 
Function, S_Dbw, Dunn, and Entropy. In addition, 
standard deviations in Table III are small values for 
the measures S_Dbw, Dunn, and Entropy and quite 
large values for the measure Objective Function. The 
Objective Function values of the proposed method are 
among the smallest one for standard deviations, 
showing the stability of the proposed method in its 
convergence as compared to those of the others.

 

Table II. Average results of 100 runs with original data sets and enhanced data sets with the number of 
enhanced features = 15, sigma1 = 0.3*var1, and sigma2 = 0.3*var2 

Data set Feature space  Method Objective Function S_Dbw Dunn Entropy 

Year 2 

Original k-means 530.04 0.81 0.16 1.13 

Enhanced k-means 389.20 0.80 0.15 1.13 

Original Kernel k-means 483.97 0.78 0.18 1.01 

Enhanced Kernel k-means 347.57 0.75 0.18 0.98 

Year 3 

Original k-means 601.25 0.73 0.16 1.01 

Enhanced k-means 447.09 0.70 0.16 1.00 

Original Kernel k-means 538.88 0.71 0.17 0.86 

Enhanced Kernel k-means 398.03 0.67 0.19 0.84 

Year 4 

Original k-means 749.76 0.62 0.16 0.98 

Enhanced k-means 604.80 0.52 0.15 0.93 

Original Kernel k-means 641.45 0.58 0.19 0.85 

Enhanced Kernel k-means 505.58 0.46 0.19 0.81 
 

Table III. Standard deviations of 100 runs with original data sets and enhanced data sets with the number of 
enhanced features = 15, sigma1 = 0.3*var1, and sigma2 = 0.3*var2 

Data set Feature space  Method Objective Function S_Dbw Dunn Entropy 

Year 2 

Original k-means 53.38 0.08 0.04 0.13 

Enhanced k-means 47.31 0.08 0.04 0.14 

Original Kernel k-means 27.77 0.06 0.04 0.08 

Enhanced Kernel k-means 25.96 0.05 0.04 0.09 

Year 3 

Original k-means 74.46 0.09 0.06 0.13 

Enhanced k-means 61.31 0.09 0.06 0.14 

Original Kernel k-means 36.63 0.07 0.05 0.09 

Enhanced Kernel k-means 28.26 0.06 0.06 0.08 

Year 4 

Original k-means 148.13 0.10 0.06 0.16 

Enhanced k-means 145.07 0.10 0.06 0.15 

Original Kernel k-means 64.82 0.06 0.06 0.08 
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Enhanced Kernel k-means 43.51 0.04 0.06 0.10 
 

Table IV. Average results of 100 runs of the kernel k-means method with data sets with different 
numbers of enhanced features while fixing sigma1 = 0.3*var1 and sigma2 = 0.3*var2 

Data set Enhanced Feature# Objective Function S_Dbw Dunn Entropy 

Year 2 

0 483.97 0.78 0.18 1.01 

3 441.31 0.45 0.16 0.96 

6 417.88 0.54 0.16 0.96 

9 386.82 0.74 0.17 0.98 

12 361.08 0.75 0.18 0.97 

15 347.57 0.75 0.18 0.98 

Year 3 

0 538.88 0.71 0.17 0.86 

3 553.32 0.31 0.13 0.80 

6 505.82 0.43 0.16 0.81 

9 451.10 0.57 0.17 0.82 

12 416.42 0.64 0.18 0.82 

15 398.03 0.67 0.19 0.84 

Year 4 

0 641.45 0.58 0.19 0.85 

3 846.32 0.19 0.11 0.76 

6 696.03 0.25 0.15 0.78 

9 621.08 0.31 0.16 0.81 

12 564.71 0.39 0.17 0.79 

15 505.58 0.46 0.19 0.81 
 

In the second group, Tables IV-VI present the 
average results of 100 runs with the kernel k-means 
algorithm with different settings in the proposed 
method. Particularly, Table IV is for different 
numbers of enhanced features and sigma1 = 0.3*var1 
and sigma2 = 0.3*var2, Table V is for different values 
of sigma1 and the number of enhanced features = 15 
and sigma2 = 0.3*var2, and Table VI is for different 
values of sigma2 and sigma1 = 0.3*var1 and the 
number of enhanced features = 15. Changes in the 
number of enhanced features and sigma1 are 
considered for transfer learning to capture the 
similarity in the source space and the target space via 
spectral clustering while changes in the number of 
sigma2 is considered for kernel clustering to make 
non-linear transformation between the data space and 
the feature space via kernel-induced distances. It is 
figured out that different numbers of enhanced 
features are linked to different averaged results 
significantly in Table IV while different values of 
sigma1 and sigma2 in Tables V and VI have no 
significant difference in averaged results of the 
measures: Objective Function, S_Dbw, Dunn, and 
Entropy. This leads to an appropriateness of the 
settings in our proposed method. Indeed, deriving 
sigma1 and sigma2 automatically from the variances 
in the target data set is applicable with little impact on 

the final results so that the proposed method can be 
directed to a parameter-free version. This also makes 
the proposed method more practical from the user’s 
side. As a result, users are only asked for the number 
of clusters and the number of enhanced features. The 
first parameter is related to a typical issue with the 
partitioning approach while the second one to a 
typical issue with feature space enhancement based 
on transfer learning. As for the number of enhanced 
features, shown in Table IV, the best results for the 
measures S_Dbw, Dunn, and Entropy are associated 
with 3 enhanced features while the best results for 
Objective Function with 15 enhanced features. 
Nevertheless, the stability of the proposed method 
increases as the number of enhanced features 
increases in spite of not the best results. As displayed 
in Table II for comparison with different methods, the 
proposed method still produces better results even 
with 15 enhanced features. This fact shows an 
appropriateness of the proposed method using the 
kernel k-means algorithm in the enhanced feature 
space. 

In short, it is found that our two-phase clustering 
method is effective with a combination of spectral 
clustering for transfer learning between two domains 
and kernel k-means for clustering similar transformed 
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instances in the feature space for educational data 
clustering. As a result, our algorithm can generate 
several groups of the most similar instances in 
spherically-shaped clusters in the enhanced feature 
space which are actually arbitrarily-shaped clusters in 
the enhanced data space. Those clusters are compact 
and well-separated as confirmed with the better 

averaged results of both external and internal validity 
measure groups: (Entropy) and (Objective Function, 
S_Dbw, Dunn), respectively. Statistical tests also 
show that all the better differences between our 
proposed method and the others are statistically 
significant at the significance level of 0.05.

 

Table V. Average results of 100 runs of the kernel k-means method with data sets with different 
values of sigma1 while fixing the number of enhanced features = 15 and sigma2 = 0.3*var2 

Data set sigma1 Objective Function S_Dbw Dunn Entropy 

Year 2 

0.03*var1 345.84 0.75 0.18 0.98 

0.3*var1 347.57 0.75 0.18 0.98 

3*var1 345.14 0.75 0.19 0.98 

30*var1 345.25 0.75 0.17 0.98 

300*var1 343.96 0.75 0.18 0.98 

Year 3 

0.03*var1 397.44 0.67 0.17 0.83 

0.3*var1 398.03 0.67 0.19 0.84 

3*var1 396.88 0.68 0.18 0.83 

30*var1 393.56 0.68 0.18 0.81 

300*var1 404.43 0.67 0.17 0.84 

Year 4 

0.03*var1 511.07 0.48 0.19 0.81 

0.3*var1 505.58 0.46 0.19 0.81 

3*var1 503.54 0.48 0.19 0.79 

30*var1 512.31 0.47 0.17 0.80 

300*var1 508.74 0.47 0.18 0.82 
 

Table VI. Average results of 100 runs of the kernel k-means method with data sets with different 
values of sigma2 while fixing the number of enhanced features = 15 and sigma1 = 0.3*var1 

Data set sigma2 Objective Function S_Dbw Dunn Entropy 

Year 2 

0.03*var2 367.95 0.78 0.17 1.04 

0.3*var2 347.57 0.75 0.18 0.98 

3*var2 344.38 0.75 0.18 0.97 

30*var2 344.57 0.75 0.18 0.97 

300*var2 342.71 0.75 0.19 0.98 

Year 3 

0.03*var2 434.47 0.67 0.16 0.94 

0.3*var2 398.03 0.67 0.19 0.84 

3*var2 401.13 0.67 0.18 0.84 

30*var2 396.87 0.66 0.18 0.83 

300*var2 402.14 0.68 0.18 0.84 

Year 4 

0.03*var2 561.07 0.48 0.18 0.84 

0.3*var2 505.58 0.46 0.19 0.81 

3*var2 509.70 0.46 0.18 0.81 

30*var2 514.25 0.46 0.18 0.81 
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300*var2 511.29 0.48 0.18 0.82 

V. RELATED WORKS 
Transfer learning has been received much 

attention in the multimedia data mining area such as 
text mining and image mining areas. Among the first 
works bringing transfer learning to the educational 
data mining area, our work aims to obtain better 
mining models from smaller data sets with a great 
support of transfer learning. In this review on the 
related works, we figure out the design rationale of 
our method and compare it with the ones in the 
related works. 

Firstly, several works on domain adaptation such 
as [3, 6, 9, 10, 18, 22] are discussed. Most of the 
works on domain adaptation were dedicated to data 
classification and that implies few of them for data 
clustering. Therefore, their transfer learning process 
often exploited the labeled source data sets. They are 
detailed as follows. 

Indeed, Chang et al. (2017) [6] used both labeled 
data in the source and target domain for the training 
phase. Different from the existing works, Chang et al. 
(2017) [6] has relaxed the use of domain-independent 
features. Instead of them for a shared space between 
the target and source domains, Chang et al. (2017) [6] 
requested a parallel data set which plays a role of a 
bridge to create the relations between the target and 
source domains. In our educational context, it is not 
trivial to reach such a parallel data set. Duan et al. 
(2012) [9] proposed the Heterogeneous Feature 
Augmentation (HFA) method to derive new 
augmented feature representations for learning tasks. 
Their method didn’t ask for the optimal dimension of 
the common subspace. However, the method required 
learning the projection matrices via learning the 
transformation metric. In addition, Feuz and Cook 
(2015) [10] defined the feature space remapping 
method for two cases: unlabeled and labeled target 
data sets, in order to transfer knowledge between 
different domains with no need of so-called co-
occurrence data. In their method, meta-features are 
defined to connect the features of the target and 
source spaces. In particular, the method learnt a 
mapping from each dimension in the target space to a 
corresponding dimension in the source space and then 
built a classifier on the labeled source data set along 
with the mapped labeled target data set if any for 
predicting the instances of the target domain. 
Different from [10], our method built a cluster model 
in the target space, directly on the target data set. 
Above all, both target and source data sets in our 
works are unlabeled. Zhou et al. (2015) [22] used a 
labeled source data set to train a classification system 
that could classify the instances in a different target 
data set by linking heterogeneous features with pivot 
features via joint non-negative matrix factorization. 
However, the method in [22] was specific for 
sentiment classification so that the authors could view 
the document instances in the source and target 
domains in the form of matrix. Besides, the authors 
constructed a common space and then built a 

prediction model in that space. Different from [22], 
our work aimed at enhancing the target data space and 
then built a clustering model in the enhanced target 
feature space. 

Exceptionally among them are [3, 18] with the 
transfer learning process on unlabeled data in both 
source and target domains. Blitzer et al. (2006) [3] 
introduced structural correspondence learning to build 
a common space where a classifier learnt from the 
labeled source data set can be used for predicting the 
instances in the unlabeled target data set. In the 
transfer learning process, the authors examined the 
correlations between the domain-specific features via 
the pivot features with the pivot predictors. Pan et al. 
(2010) [18] proposed spectral feature alignment from 
spectral clustering on the unlabeled parts of the target 
and source data sets as we discussed previously in 
section 3. Compared to [18], the approach in [3] gave 
us more difficulties such as building a lot of pivot 
predictors and determining the labels for the data to 
build these predictors while our data sets are 
unlabeled. Therefore, our work was based on spectral 
feature alignment in [18] instead of structural 
correspondence learning in [3]. 

Secondly, many works such as [4, 5, 11-13] have 
been proposed for educational data clustering. 
Jovanovic et al. (2012) [12] performed the k-means 
clustering algorithm on the student’s data related to 
cognitive styles and the score achieved for each 
course. A cluster model was built for each course to 
discover groups of the students with similar cognitive 
properties for e-learning improvements. Also with the 
k-means clustering algorithm, Campagni et al. (2014) 
[5] constructed the cluster models on the grades and 
delays of students for their examinations. The 
resulting clusters are then analyzed for highlighting 
the regularities over the years and used for course and 
student success improvement. Besides, Bresfelean et 
al. (2008) [4] used the k-means clustering algorithm 
with the FarthestFirst method to group the students. 
The resulting groups of similar students are utilized 
for building the two student’s exam success and 
failure profiles. Different from [4, 5, 12], Jayabal and 
Ramanathan (2014) [11] proposed the Partitional 
Segmentation algorithm based on the PLS-path 
modeling approach to cluster the 10th grade data for 
analyzing the relationships of the performance in 
main subjects with medium of study. Moreover, Kerr 
and Chung (2012) [13] used the FANNY algorithm 
for fuzzy clustering and the AGNES algorithm for 
hard clustering in identifying key features of student 
performance from their different actions. As 
compared to these existing related works, our work 
focuses on a student clustering task based on the 
students’ study performance at the program level with 
the assumption that our target data set has been 
collected in a small size for the target program. 
Therefore, we define another solution to this 
clustering task with a great support of another much 
larger data set gathered with another program. The 
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situation leads to the inclusion of transfer learning in 
our proposed method as previously discussed. 

Nevertheless, some recent works in the 
educational data mining area have also considered 
using multiple data sources in a mining task. They are 
listed as [14, 20]. In particular, Koprinska et al. 
(2015) [14] performed a student classification task 
with three data sources while Voβ et al. (2015) [20] 
conducted a performance prediction process with two 
different comparable data sets. Only Voβ et al. (2015) 
[20] suggested a transfer learning approach to reduce 
data sparseness with Matrix Factorization. In 
comparison with [20], our work has the different 
purpose, task, and approach for the transfer learning 
process. Indeed, transfer learning in our work is 
devoted to a target data space enhancement with 
spectral clustering on both target and source data sets 
so that the clustering process can then be executed 
more effectively on the target data set. 

VI. CONCLUSION 
In this paper, we have defined an educational data 

clustering task to cluster the undergraduate students 
into similar groups based on their study performance 
at the program level. In contrast to the educational 
data clustering tasks that have been solved in the 
existing works, our task is considered for the 
supported program A with which a small data set has 
been collected. Meanwhile, another program B has 
been supported and associated with a much larger 
data set for the task. Therefore, a solution to the task 
on the target data set of the program A is proposed in 
considering the exploitation of the source data set of 
the program B. 

 In particular, we have proposed a two-phase 
educational data clustering method based on transfer 
learning and kernel k-means algorithms as a solution 
to the task. This method has carried out the transfer 
learning process at the representation level in the first 
phase. It has concentrated on deriving the new 
features from the connections between the domain-
specific features of the target and source data spaces 
with the domain-independent features shared by both 
target and source data spaces. These new features 
increase the capability of discriminating the instances 
of the target domain and are then used to enhance the 
target data space. In the second phase, our method has 
performed the clustering process at the instance level 
by means of kernel k-means. Different from the 
existing works on educational data clustering, the 
clustering process takes place in the enhanced target 
feature space instead of the original target data space 
or the enhanced target data space. Thus, the clusters 
can be formed naturally in arbitrary shapes. As a 
result from the experiments on real data sets, our 
cluster model is better than those from other 
approaches. The resulting clusters have been 
evaluated for their compactness and separation via the 
smaller objective function value, the smaller S_Dbw 
value, and the larger Dunn value for internal 
validation and the smaller Entropy value for external 

validation. Statistical tests also confirmed the 
significant better differences between our cluster 
models and the others. 

As our future works, using the resulting cluster 
models in the educational decision support system is 
importantly considered for improving our students’ 
study performance. They can be combined with a case 
based reasoning model for decision making support 
for academic affairs. They are also planned for 
generating study profiles of our students once their 
groups are observed. At that moment, their study 
trends can be kept track of towards their graduation. 
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PHƯƠNG PHÁP GOM CỤM DỮ LIỆU GIÁO 
DỤC HAI GIAI ĐOẠN DỰA TRÊN HỌC 
CHUYỂN ĐỔI VÀ KERNEL K-MEANS 

Tóm tắt: Trong bài báo này, chúng tôi đề xuất 
phương pháp gom cụm dữ liệu giáo dục hai giai đoạn 
dựa trên học chuyển đổi và kernel k-means. Phương 
pháp này là giải pháp cho bài toán gom cụm sinh viên 
với tập dữ liệu đích được thu thập từ chương trình 
đích là ít; trong khi đó, chương trình nguồn khác lại 
đang có sẵn tập dữ liệu lớn hơn nhiều. Tập dữ liệu 
đích ít trong không gian dữ liệu cao chiều có thể 
không đủ tốt cho bài toán gom cụm này. Do đó, 
phương pháp được đề xuất quyết định triển khai học 
chuyển đổi ở giai đoạn đầu để khai thác cả hai tập dữ 
liệu nguồn và đích không có nhãn nhằm phát triển 
dạng biểu diễn tốt hơn cho các đối tượng trong miền 

đích. Một số đặc trưng mới được dẫn ra ở giai đoạn 
đầu này với gom cụm phổ trên các đặc trưng độc lập 
miền và các đặc trưng phụ thuộc miền của cả hai miền 
đích và nguồn. Các đặc trưng mới này sẽ được dùng 
để tăng cường không gian dữ liệu của miền đích. 
Trong giai đoạn sau, phương pháp được đề nghị sẽ 
thực thi giải thuật kernel k-means để hình thành cụm 
của các sinh viên trong không gian đặc trưng được 
tăng cường của miền đích. Thật ra các cụm này trở 
thành các cụm có hình dạng tùy ý trong không gian 
dữ liệu được tăng cường của miền đích với độ nén và 
độ phân tách tốt hơn. So với các công trình liên quan 
hiện có trong lĩnh vực khai phá dữ liệu giáo dục, bài 
toán và phương pháp tương ứng được đề xuất là mới 
cho việc gom các sinh viên tương tự nhau vào các 
nhóm tương ứng dựa trên kết quả học tập ở mức 
chương trình của các sinh viên này. Hơn nữa, các kết 
quả thực nghiệm và kiểm định thống kê trên các tập 
dữ liệu thực tế đã cho thấy tính hiệu quả của phương 
pháp được đề xuất với các cụm có chất lượng tốt hơn 
so với các cụm có được từ các hướng tiếp cận khác. 

 
Từ khóa: Gom cụm dữ liệu giáo dục, kernel k-

means, học chuyển đổi, thích nghi miền theo hướng 
tiếp cận không giám sát, khoảng cách Euclidean trong 
không gian biến đổi dựa trên kernel. 
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