

FEDERATED LEARNING BASED
WORKLOAD PREDICTION IN CLOUD

COMPUTING

Nguyen Quoc Khanh*, Tran Quang Duc*, Nguyen Van Toan†, Tong Van Van*
* Hanoi University of Science and Technology, Hanoi, Vietnam

+ Salesforce.com, Inc., California, USA

Abstract: Predicting CPU demand is a major challenge

in cloud computing due to the volatile nature of CPU

utilization. Moreover, gathering CPU utilization data from

multiple virtual machines to develop a prediction method

raises concerns about data privacy, transmission costs, and

system scalability. To address these challenges, this paper

introduces FL-LSTM, a novel workload prediction

technique that combines long short-term memory

networks (LSTM) with federated learning (FL). In the FL-

LSTM approach, each client uses LSTM along with its

local CPU utilization data to create a local model. These

local models are then aggregated to form a global model

using the standard Federated Averaging (FedAvg)

algorithm. We conducted a thorough evaluation of FL-

LSTM using eight clusters of Google cluster traces and

eight clusters of the Azure Public Dataset. Our results

demonstrate that FedAvg outperforms alternative FL

strategies, while FL-LSTM meets or surpasses the

performance of other state-of-the-art methods for cloud

workload prediction. Notably, FL-LSTM achieved a Mean

Squared Error of 0.00438, representing improvements of

74.7% and 9.4% compared to ARIMA and HBNN,

respectively. These findings highlight the potential of FL-

LSTM as an effective solution for predicting CPU demand

in cloud computing environments.

Keywords: CPU usage prediction, Cloud computing,

Federated Learning, LSTM.

I. INTRODUCTION

Cloud computing has seen remarkable growth in recent
years, with more enterprises leveraging services and
applications on platforms like Amazon AWS, Google
Cloud, and Alibaba. These providers enable businesses to
autonomously procure cloud resources, deploy scalable
solutions, and improve cost efficiency. Cloud computing
providers aim to preconfigure servers in advance to ensure
enhanced Quality of Service (QoS), characterized by
minimal latency, high availability, and reliable
performance. Accurate forecasting of CPU demand allows
providers to anticipate improved QoS indicators and
optimize resource utilization by reducing the number of
preconfigured idle machines or allocated but unused

resources. However, predicting cloud workload demands
is challenging due to their variability, massive scale,
diverse nature, and fluctuations.

The research community has demonstrated
considerable interest in predicting CPU consumption.
Given that CPU consumption rates are recorded as time-
series data, their forecasting can be regarded as a time-
series prediction challenge. Forecasting CPU utilization
employs techniques such as Auto Regression (AR) [1],
Moving Average (MA) [2], Autoregressive Integrated
Moving Average (ARIMA) [3], Support Vector
Regression (SVR) [4], Bayesian classifiers [5], efficient
supervised learning-based Deep Neural Networks
(esDNN) [6], and Long Short-Term Memory Networks
(LSTMs) [7], each exhibiting varying degrees of efficacy
in generating precise predictions. Traditionally, these
techniques can be executed using two distinct
methodologies. The initial approach involves utilizing
data from a singular virtual machine (VM) to develop the
predictive models. It has encountered the issue of data
scarcity, particularly when implemented in a new VM. The
second approach is executed in a centralized fashion, with
training conducted on a central server utilizing CPU data
aggregated from multiple VMs or clusters. Centralized
prediction techniques have problems with system
scalability and data protection. The scalability challenge
pertains to the escalating difficulty of capturing, storing,
and analyzing all data at a centralized server. For example,
Google cluster traces comprised data from eight distinct
Borg cells, with a compressed size of approximately 2.4
TB. The data privacy issue pertains to the sensitive nature
of CPU utilization data, which is considered a vital metric
for evaluating the performance of services and
applications, especially in VMs and servers. Safeguarding
CPU consumption data is crucial for all businesses
utilizing cloud computing services.

In this paper, we address the challenges of cloud
workload prediction with limit data by applying LSTM
and Federated Learning (FL). Introduced by Google in
2016, FL is a framework where multiple clients
collaboratively train a machine learning model while
maintaining the privacy of their data under the
coordination of a central aggregator. FL has the potential
to transform critical domains, including CPU consumption
forecasting. Our paper makes the following contributions:

- We introduce FL-LSTM, a combination of LSTM and

Federated Averaging [8]. To our knowledge, this is the first

attempt to estimate future CPU demands in cloud

Contact author: Duc Tran,

Email: ductq@soict.hust.edu.vn
Manuscript received: 03/12/2024, revised: 13/3/2025, accepted:
22/3/2025.

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 3

Nguyen Quoc Khanh, Tran Quang Duc, Nguyen Van Toan,...

FEDERATED LEARNING BASED WORKLOAD PREDICTION IN CLOUD COMPUTING

computing systems using FL. Previous studies have

focused on optimizing power consumption or the number

of virtual machines in the system. Given the sensitive

nature and volume of workload training data in cloud

systems, our approach is crucial for addressing privacy and

scalability issues

- We conducted a comprehensive evaluation of FL-

LSTM using CPU traces from eight Google clusters [9].

Our results demonstrate that Federated Averaging

outperforms other FL strategies, including

FaultTolerantFedAvg, FedAdagrad, FedMedian,

FedTrimmedAvg, and Krum. Moreover, FL-LSTM has

shown superiority over well-established techniques, with

MSE improvements of 74.7% and 9.4% compared to

ARIMA and HBNN, respectively.

The remainder of this paper is structured as follows:
Section II reviews relevant studies on workload prediction
using statistical methods and machine learning techniques,
and provides an overview of FL. Section III presents a
detailed description of the proposed workload prediction
mechanism utilizing the LSTM model and FL. Section IV
discusses the experimental setup and findings. Finally,
Section V concludes the paper and suggests potential
directions for future research.

II. BACKGROUND AND RELATED WORK

A. CPU usage prediction methods

CPU utilization forecasting techniques can be broadly
categorized into statistical and machine learning-based
approaches. Among statistical methods, Wu et al. [1]
combined Kalman filter and Auto Regression to enhance
CPU usage predictions while mitigating measurement
inaccuracies. Fu and Zhou [3] employed ARIMA to
forecast CPU values, addressing VM deployment issues in
data centers and determining VM affinities. Khan et al.
[10] explored Hidden Markov Models (HMM) to detect
temporal relationships between VMs and predict CPU
pattern variations. However, AR, ARIMA, and HMM
have shown limitations in handling non-linearity in CPU
time series and tend to underperform on time series with
temporal variability, complex characteristics, or sudden
shifts [11], [12].

Machine learning models offer advantages in learning
non-linear correlations among data samples and have
demonstrated effectiveness across various time series data.
Di et al. [5] extracted features characterizing host load
fluctuation and utilized Bayes classifier to improve long-
term load predictions. Minxian et al. [6] introduced an
efficient supervised learning-based deep neural network
(esDNN) that transforms multivariate data into time series
using a sliding window, modifying gate recurrent units to
address CPU rate fluctuations and gradient vanishing
problems.

Long Short-Term Memory (LSTM) networks, a type
of recurrent neural network, have shown effectiveness in
many comparative studies [13], [14]. Owing to its gating
mechanism, the Long Short-Term Memory (LSTM)
model effectively captures and associates patterns from
distant past sequences, making it particularly well-suited
for time series data such as server load, which often
exhibits complex cyclical or trending behaviors. Unlike

traditional models, LSTM does not rely on assumptions of
linearity or stationary states, enabling it to adapt flexibly
to nonlinear and heterogeneous datasets. Furthermore,
LSTM requires relatively modest data volumes and
computational resources, rendering it practical for a wide
range of realworld applications. Rossi et al. [12] further
refined this approach with Probabilistic LSTM (LSTMD)
to reduce uncertainty stemming from statistical
characteristics of observations.

While LSTM, esDNN, and LSTMD have shown
promise, their training typically occurs on a central server
using data collected from various VMs—a centralized
learning approach. This method faces challenges in
managing the vast data volumes generated by continuous
cloud computing operations and raises concerns about data
anonymity. Federated Learning (FL) emerges as a
potential solution to these challenges.

B. Federated Learning

Federated Learning (FL), proposed by McMahan et al.
[15], is a framework where a central server coordinates the
training of a shared global model across a federation of
participating client devices. The foundational algorithm of
FL, Federated Averaging (FedAvg), was introduced by
McMahan et al. [8]. In each FedAvg iteration, a subset of
clients is selected, typically randomly, and the server
distributes its global model to each client. Clients then
perform Stochastic Gradient Descent (SGD) on their local
loss functions and transmit the trained models back to the
server. The server updates its global model by averaging
these local models. FaultTolerantFedAvg extends this
approach by incorporating fault-tolerant methods to
handle device dropouts, enhancing FL’s resilience in
heterogeneous and variable network environments.

Yin et al. [16] developed two robust distributed
gradient descent algorithms: median-based gradient
descent (FedMedian) and trimmed-mean-based gradient
descent (FedTrimmedAvg). Both techniques achieve
order-optimal statistical error rates for strongly convex
losses, with FedTrimmedAvg showing superior rates
when local sample sizes are limited.

Reddi et al. [17] introduced adaptivity through
adaptive optimizers for both client and server optimization
- FedOptFedOpt. Their federated variants—FedAdagrad,
FedYogi, and FedAdam—demonstrate improved
convergence in nonconvex settings with heterogeneous
data, enhancing overall FL performance.

FedProx [18] is a federated optimization framework
designed to address both statistical and systems
heterogeneity in distributed networks. By introducing a
proximal term to the local objective function, FedProx
restricts local updates to remain closer to the global model,
mitigating divergence caused by nonIID data.
Additionally, it allows clients to perform variable amounts
of work (partial solutions) based on their resource
constraints, thereby improving robustness against
stragglers.

Addressing Byzantine resilience, Blanchard et al. [19]
presented Krum, which guarantees convergence in the
presence of 𝑓 Byzantine adversaries among 𝑛 total clients.
Krum combines squared-distance and majority-based
methodologies, selecting the vector that minimizes the sum
of squared distances to its 𝑛 − 𝑓 nearest vectors. This

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 4

approach exhibits a time complexity of 𝑂(𝑛2 ⋅ 𝑑), where 𝑑
represents the parameter vector dimension.

III. METHODOLOGY

Conventional centralized CPU prediction
methodologies typically involve three sequential stages:
data processing, compilation, and model building. These
approaches require data acquisition from numerous
distinct VMs, leading to potential drawbacks such as data
privacy concerns, data transfer costs, and scalability
challenges. Moreover, the centralized server represents a
single point of failure, risking data loss in the event of a
crash.

To address these challenges, we propose FL-LSTM, a
novel approach combining Long Short-Term Memory
(LSTM) networks with Federated Learning (FL). In FL-
LSTM, each VM or cluster is treated as a client. Let 𝐾
represent the total number of clients and 𝐷𝑘 denote the
local CPU utilization dataset for client 𝑘 . FL-LSTM
achieves high scalability by allowing each client to
construct a local training model on its CPU load dataset.
Figure 1(a) illustrates the comprehensive design of FL-
LSTM, while Algorithm 1 provides its pseudocode.

In each iteration, the algorithm chooses a subset 𝑆𝑡
from the total 𝐾 clients. The selection of the client subset

𝑆𝑡 plays a pivotal role in simulating real-world scenarios,
where not all clients are consistently available due to
resource or connectivity constraints, particularly in
systems with a large number of clients. As established in
the foundational work by McMahan [15], the standard
approach involves randomly selecting a fraction 𝐶 of

clients, with the number of selected clients determined by
𝑚 = 𝑀𝐴𝑋(𝐶 ∗ 𝐾, 1) , ensuring that at least one client
participates in each round. However, in this study, 𝑆𝑡 is
chosen to include all available clients to minimize the
impact of random selection on the evaluation of model
performance. Subsequent sections will explore
experimental configurations where only a subset of clients
is active in each round, providing a more comprehensive
analysis of the algorithm’s performance under varying
participation levels.

Each client 𝑘 receives the global model 𝐰𝑡−1 and
trains its local model on the dataset 𝐷𝑘 . FL-LSTM
employs LSTM for local training, which possesses
inherent benefits in cloud workload forecasting and
surpasses alternative methods in numerous comparative
analyses (see to Section II for further details).

Figure 1(b) depicts the LSTM architecture
implemented within our FL-LSTM framework. The
proposed model conceptualizes CPU prediction as a time
series forecasting challenge, leveraging sequential CPU
utilization measurements to forecast future resource
consumption. The architecture comprises a precisely
calibrated six-layer configuration: three LSTM layers for

(a) (b)

Figure 1. (a) The architecture of FL-LSTM, (b) LSTM-based workload predict

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 5

Nguyen Quoc Khanh, Tran Quang Duc, Nguyen Van Toan,...

FEDERATED LEARNING BASED WORKLOAD PREDICTION IN CLOUD COMPUTING

hierarchical temporal feature extraction, two dropout
layers for model regularization, and a terminal dense layer
for prediction synthesis. The configuration of the three
LSTM layers establishes a hierarchical feature extraction
mechanism capable of capturing multi-scale temporal
patterns inherent in workload data. Specifically, the initial
layer extracts short-term fluctuations (e.g., hourly
variations), the intermediate layer identifies medium-term
trends (i.e., trends characterized by elevated usage during
business hours), and the final layer considers long-term
patterns (e.g., weekly periodicity). This multi-scale
approach proves particularly useful in characterizing
complex temporal dynamics across various time horizons.
To fortify the model’s generalization capabilities, we
integrate two dropout layers parameterized by dropout rate
𝑝 . These dropout layers stochastically deactivate input
units during the training phase. Such regularization
methodology is critical within our federated learning
paradigm, wherein the model must effectively aggregate
heterogeneous features from distributed clients exhibiting
potentially divergent load patterns. The dropout
mechanism mitigates the model’s propensity to overfit
specific training data patterns, instead facilitating the
acquisition of robust features that generalize effectively
across dynamic server load conditions. The architectural
configuration culminates in a dense layer employing linear
activation, which maps the extracted temporal features to
a continuous CPU utilization prediction. This terminal
configuration is well-suited for the regression problem at
hand and has demonstrated exceptional predictive
accuracy through extensive experimental evaluations. We
have diligently evaluated and optimized critical LSTM
parameters (such as dropout rate, batch size, and input
shape) to enhance the model’s predictive accuracy.

During the training process, local LSTM model
parameter updates, denoted as 𝐰𝑘

𝑡 , are transmitted to the
central server. The server aggregates these updates to
update the global model 𝐰𝑡 using FL strategies. In FL-
LSTM, we employ FedAvg to combine client models by
averaging their parameters:

𝐰𝑡 =
1

|𝑆𝑡|
∑ 𝐰𝑘

𝑡

𝑘∈𝑆𝑡

 (1)

FedAvg offers reduced privacy risks compared to
central server storage, as weight updates are managed in
memory and removed following aggregation. This
approach has been successfully applied to various time
series forecasting challenges, including 5G base station
traffic prediction [20], vehicle count forecasting [21], and
short-term energy usage prediction [22]. The present work
demonstrates the advantages of FedAvg over alternative
aggregating functions for workload predictions. A
comprehensive examination of these benefits will be
presented in the subsequent section.

The stopping criteria of the FL-LSTM algorithm
consist of two main parameters: the number of
communication rounds 𝑇 and the number of epochs
executed by each client. In real-world cloud workload
prediction systems, servers typically operate continuously,
with clients being dynamically initialized or released as
needed. However, for our implementation of FL-LSTM,
we set 𝑇 to a specific value based on experimental results
that demonstrated optimal performance-efficiency
tradeoffs. Regarding the number of epochs on each client,
we implement an early stopping mechanism based on
validation loss. This approach ensures that when the global
model reaches sufficient quality, the local LSTM training
on each client will terminate once the validation loss stops
improving, preventing overfitting and reducing
unnecessary computational costs while maintaining
prediction accuracy.

IV. EXPERIMENTS AND RESULTS

A. Dataset specification

This study utilizes Google cluster traces [9] and Azure
Public Dataset V1 [23] to investigate FL-LSTM and other
algorithms. We acquired cloud cluster traces from the
Google Cloud Platform , which provide resource
utilization information for eight Borg cells throughout
May 2019. The dataset focuses on resource requests and
usage, excluding details about end users, their data, or
access patterns to storage systems and other services. We
specifically use the CPU usage table, which contains
information histograms for every 5-minute interval. Due to
its substantial size (approximately 2.4TB compressed), the
trace data is only accessible through Google BigQuery
(https://cloud.google.com/bigquery). The Azure Public
Dataset V1 comprises CPU traces for 2,013,767 virtual
machines monitored over a three-month duration from
November 2016 to February 2017. Each virtual machine
has a minimum of 28 consecutive days of CPU load data,
recorded at five-minute intervals. We randomly selected 8
clusters to assess our proposed technique.

We generated datasets encompassing the average CPU
loads of all VMs at 5-minute intervals for each cluster. To
expedite the training process and enhance convergence,
we applied Max-Min scaling to normalize the data within
the [0,1] range. This resulted in eight datasets, each
containing approximately 8,000 data points of CPU
utilization.

Algorithm 1: FL-LSTM

1: Input:

- 𝑇 is the number of FL rounds

- 𝐾 is the total number of clients that are indexed by 𝑘

- 𝐷𝑘 is the local dataset of client 𝑘

2: Initialize global model parameters 𝐰0

3: For each round 𝑡 do

4: Select a subset 𝑆𝑡 of 𝐾 clients

5: Send 𝐰𝑡−1 to the clients that are elements of 𝑆𝑡

6: For each client 𝑘 ∈ 𝑆𝑡 in parallel do:

7: 𝐰𝑘
𝑡 ← LSTM(𝐰𝑘

𝑡−1, 𝐷𝑘)

8: Determine the global model updates, i.e.,

𝐰𝑡 ←
1

|𝑆𝑡|
∑ 𝐰𝑘

𝑡

𝑘∈𝑆𝑡

9: Output: The global model 𝐰𝑇

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 6

Our experiments produce forecasts for two distinct
time frames: 10 and 30 minutes in advance, representing
2- and 6-step trajectories of Google cluster traces,
respectively. We employ multiple horizons to assess the
ability of FL-LSTM and other methods to manage
fluctuating CPU loads over time, given that an effective
regressor for one horizon may not produce precise
predictions for others. For each horizon, the last 20% of
the data from each cluster was employed as the testing set
for predictive outcomes. Additionally, we utilized 10%,
20%, 40%, and 80% of the data immediately before the
evaluation set for model training, yielding train-test ratios
of 1:2, 2:2, 4:2, and 8:2, respectively. By keeping the
testing set the same while incrementally augmenting the
training data, we seek to illustrate the efficacy of the FL-
LSTM algorithm in producing accurate predictions, even
with limited data for each cluster. The evaluation was
performed on a machine equipped with a 20-core Intel i7
processor and 256 GB of RAM. The experiments in this
study were simulated by running both the server and
clients in parallel on a single workstation with the
specified configuration. For a client equipped with a dual-
core Intel i3 CPU and 4GB of RAM, training an LSTM
model over 20 epochs required approximately 30 seconds
per iteration.

B. Performance metrics

To evaluate the precision of FL-LSTM and several
other methods, we employ Mean Squared Error (MSE) and
Mean Absolute

Error (MAE), consistent with previous studies [3], [6],
[12]. These metrics are calculated as follows:

MSE =
∑ (𝑇

𝑡=1 𝑥(𝑡) − 𝑥̂(𝑡))2

𝑇
 (2)

MAE =
∑ |𝑇

𝑡=1 𝑥(𝑡) − 𝑥̂(𝑡))|

𝑇
(3)

where T represents the number of samples, x(t) denotes the
actual value of the t-th sample, and xˆ(t) represents the
associated predicted value. MSE calculates the squared
difference between x(t) and xˆ(t), while MAE denotes the
absolute difference. Lower MSE and MAE values indicate
better performance.

In the following subsections, we present the
experimental results of our proposed methods and
compare them with state-of-the-art studies

C. Comparison with the standard LSTM and Centralized
LSTM

This section measures the performance of the FL
architecture in enhancing the accuracy compare to the
traditional LSTM model and the centralized LSTM
architecture for prediction with constrained input data. The
traditional LSTM model operates independently on each
cluster, training on local data and making predictions
accordingly. Otherwise, the centralized LSTM is designed
to collecting all training data from clusters on a server and
training one global model to generate predictions for all
clusters. Table I show the MSE and MAE of the standard
LSTM, centralized LSTM and FL-LSTM in different
setups.

In 10-minute-ahead prediction, FL-LSTM consistently
achieves the lowest MSE values across all train-test ratios,
indicating superior performance in error minimization
compared to LSTM and the centralized LSTM. For
instance, at the 1:2 ratio, FL-LSTM achieves an MSE of
0.0053 compared to 0.0062 of LSTM. Similarly, for MAE,
FL-LSTM generally outperforms, particularly at the 1:2
ratio. However, the centralized LSTM shows competitive
performance with FL-LSTM at ratios of 4:2 and 8:2.

In 30-minute-ahead prediction, FL-LSTM exhibits the
lowest predictive errors at 1:2, 2:2, and 4:2 ratios with
MSEs of 0.0076, 0.0068, and 0.0070, respectively. For
example, at a ratio of 1:2, FL-LSTM achieves MSE, which
is 12.64% better compared to the MSE of LSTM (0.0087).
Regarding MAE, FL-LSTM maintains an advantage
across most ratios, particularly with the smallest value
(0.0597) observed at 2:2.

Increasing the training dataset size reduces the MSE for
all models in most cases, showing that more training data
enhances performance. For example, FL-LSTM’s MSE
drops from 0.0053 at 1:2 to 0.0044 at 8:2 for the 10-
minute-ahead prediction. Similarly, MAE decreases with
larger train-test ratios, highlighting the generalization
capability improvement with more training data. FL-
LSTM consistently outperforms other models across both
short (10-minute) and long (30-minute) prediction
horizons in the limited data scenarios, where the train-test
ratios are 1:2 or 2:2, confirming its superior performance
and opening up the potential for deploying this solution in
practice.

D. Comparison with other FL strategies

FL-LSTM employs FedAvg for federated aggregation.
We compare it with various other aggregation algorithms

Table I. MSE and MAE of the standard LSTM, centralized LSTM and FL-LSTM

Horizon

 MSE MAE

Train-test ratio 1:2 2:2 4:2 8:2 1:2 2:2 4:2 8:2

10-minute-

ahead prediction

LSTM 0.0062 0.0049 0.0054 0.0048 0.0564 0.0517 0.0552 0.0518

Centralized LSTM 0.0054 0.0055 0.0048 0.0045 0.0532 0.0555 0.0498 0.0477

FL-LSTM 0.0053 0.0048 0.0050 0.0044 0.0534 0.0500 0.0520 0.0484

30-minute-

ahead prediction

LSTM 0.0087 0.0069 0.0072 0.0067 0.0688 0.0613 0.0635 0.0606

Centralized LSTM 0.0101 0.0089 0.0072 0.0077 0.0768 0.0722 0.0607 0.0673

FL-LSTM 0.0076 0.0068 0.0070 0.0071 0.0661 0.0597 0.0625 0.0640

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 7

Nguyen Quoc Khanh, Tran Quang Duc, Nguyen Van Toan,...

FEDERATED LEARNING BASED WORKLOAD PREDICTION IN CLOUD COMPUTING

reported in the literature, including FaultTolerantFedAvg,
FedYogi, FedMedian, FedOpt, and Krum (refer to Section

II for complete details). We assess these methodologies for
forecasting CPU rates at 2 and 6 steps in advance. To
ensure a fair comparison between FL-LSTM and
alternative benchmarks, we utilize 20% of the total number
of data samples for testing purposes for all scenarios while
increasing training data.

Figure 2 illustrates the MSE and MAE of several
Federated Learning (FL) procedures across the different
train-test ratios. In summary, FedAvg produces superior
prediction outcomes across both time horizons. It is
important to note that while most FL algorithms are
designed to address non-independent and identically
distributed data issues, this may not be a primary concern
for CPU utilization prediction in our context.

E. Comparison with other state-of-the-art methods

The aim of this section is to compare FLLSTM to other
state-of-the-art methods, such as ARIMA [3], esDNN [6],
[3], HBNN [12], and LSTMD [12]. ARIMA is a statistical
analysis model that integrates autoregression and moving
averages to forecast future trends using time series data.
esDNN offers a supervised learning-based Deep Neural
Network for predicting short-term CPU workload. HBNN
uses Bayesian Neural Networks to forecast future
workloads, whereas LSTMD applies the probabilistic
LSTM for estimating future workload values.

In addition to the above methods, this paper also
considers the Transformer model, which is a specialized

type of neural network architecture. In this experiment, the
Transformer model uses four stacked encoder blocks with
multi-head self-attention (4 heads, key dimension 256),
layer normalization, and a feed-forward network with
convolutional and dropout layers. It applies global average
pooling, followed by a dense layer (128 units, ReLU) and
a single-unit output layer.

Table II clarifies the performance metrics of FL-
LSTM, ARIMA, esDNN, HBNN, Transformer, and
LSTMD utilizing Google cluster traces. Throughout all
experiments, ARIMA consistently exhibited the worst
performance relative to the other methods, and its accuracy
does not change while increasing the training data. On the
other hand, the other methods show improvement with
more training data.

For the 10-minute-ahead prediction task, FL-LSTM
demonstrates remarkable superiority across all train-test
ratios. At a traintest ratio of 1:2, FL-LSTM achieves an
MSE of 0.00526, representing significant improvements
of 69.57%, 80.25%, 26.18%, and 13.35% compared to
ARIMA, HBNN, LSTMD, and ESDNN, respectively. The
performance of FL-LSTM shows consistent enhancement
with increased training data, with its MSE decreasing from
0.00526 at a traintest ratio of 1:2 to an impressive 0.00438
at a ratio of 8:2. Notably, FL-LSTM outperforms all other
methods across all evaluated ratios in terms of MSE. For
the MAE metric, there is a minor exception at a train-test
ratio of 4:2, where the deviation between FL-LSTM and

Figure 2. MSE and MAE of different FL strategies when used to render predictions. (a) and (c) represent the 2-step
ahead predictions. (b) and (d) represent the 6-step ahead predictions. We use 20% of the total number of

samples for testing.

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 8

LSTMD is negligible (0.0520 and 0.0519), indicating
comparable performance in this specific scenario.
Nevertheless, FL-LSTM regains its lead at the 8:2 ratio
with the lowest MAE of 0.0484. When comparing with

Transformer, FL-LSTM demonstrates particularly
impressive results. The Transformer model shows poor
performance at lower training data volumes. Its MSE
(0.03933 at 1:2 ratio) is 86.6% higher than that of FL-
LSTM. Even at the highest train-test ratio of 8:2, where
Transformer improves significantly to an MSE of 0.00513,

FL-LSTM still outperforms it with an MSE of 0.00438,
representing a 14.6% improvement. The HBNN model
exhibits the most dramatic improvement as training data
increases, with MSE reducing from 0.02664 at a 1:2 ratio
to 0.00483 at an 8:2 ratio, suggesting high data
dependency. Applying the exact same configuration as in
[12] (traintest ratio of 8:2), the MSE of FL-LSTM is
0.00438, showing substantial improvements of 74.7% and
9.4% compared to ARIMA and HBNN, respectively.

For the more challenging 30-minute-ahead prediction
task, FL-LSTM maintains its superiority at lower train-test
ratios ranging from 1:2 to 4:2, consistently achieving the
lowest MSE and MAE values compared to other methods.
At the 1:2 ratio, FL-LSTM’s MSE of 0.00764 outperforms

Transformer by 72.3% (Transformer’s MSE: 0.02756) and
HBNN by 77.0% (HBNN’s MSE: 0.03321). As the train-
test ratio increases to 8:2, HBNN slightly edges ahead with
an MSE of 0.00681 compared to FL-LSTM’s 0.00711,

marking a 4.2% difference. However, considering
FLLSTM’s consistently superior performance across
multiple ratios and metrics, this minor difference does not
diminish its overall effectiveness. Furthermore, even at the
8:2 ratio, FL-LSTM still outperforms Transformer (MSE:
0.00806) by 11.8%. The Transformer model continues to
show high sensitivity to training data volume in the 30-
minuteahead prediction, with inconsistent improvement
patterns when increasing from the 1:2 to 4:2 ratios. Its
MSE marginally improves to 0.02376 at 2:2 but then
deteriorates to 0.02738 at 4:2, suggesting instability in
learning longer-term dependencies with varying data sizes.

Table III displays performance measures that compare
FL-LSTM with various stateof-the-art methodologies on
the Azure Public dataset, thereby substantiating FL-
LSTM’s exceptional efficacy in forecasting CPU
consumption. For predictions made 10 minutes in advance,
FL-LSTM consistently attains the minimal MSE values
across all traintest ratios (0.1104 at 1:2, 0.1138 at 2:2,
0.1283 at 4:2, and 0.1105 at 8:2). This indicates substantial
enhancements compared to conventional approaches such

Table II. MSE and MAE of FL-LSTM and other state-of-the-art methods on Google Trace Dataset

Horizon

 MSE MAE

Train-test ratio 1:2 2:2 4:2 8:2 1:2 2:2 4:2 8:2

10-minute-ahead

prediction

ARIMA 0.01730 0.01730 0.01729 0.01730 0.1031 0.1031 0.1031 0.1031

HBNN 0.02664 0.01180 0.01248 0.00483 0.1270 0.0846 0.0904 0.0504

LSTMD 0.00713 0.00580 0.00519 0.00489 0.0612 0.0552 0.0518 0.0508

ESDNN 0.00607 0.00554 0.00579 0.00566 0.0577 0.0555 0.0571 0.0572

Transformer 0.03933 0.01125 0.01185 0.00513 0.1517 0.0805 0.0797 0.0547

FL-LSTM 0.00526 0.00476 0.00502 0.00438 0.0534 0.0500 0.0520 0.0484

30-minute-ahead

prediction

ARIMA 0.01752 0.01752 0.01752 0.01752 0.1038 0.1038 0.1038 0.1038

HBNN 0.03321 0.01725 0.00750 0.00681 0.1346 0.0940 0.0642 0.0602

LSTMD 0.01389 0.00913 0.00954 0.00759 0.0892 0.0713 0.0722 0.0648

ESDNN 0.00788 0.00816 0.00874 0.00775 0.0661 0.0687 0.0705 0.0670

Transformer 0.02756 0.02376 0.02738 0.00806 0.1318 0.1170 0.1251 0.0694

FL-LSTM 0.00764 0.00676 0.00703 0.00711 0.0661 0.0597 0.0625 0.0640

Table III. MSE and MAE of FL-LSTM and other state-of-the-art methods on Azure Public dataset

Horizon

 MSE MAE

Train-test ratio 1:2 2:2 4:2 8:2 1:2 2:2 4:2 8:2

10-minute-ahead

prediction

ARIMA 0.1983 0.1983 0.1983 0.1983 0.2229 0.2229 0.2229 0.2229

HBNN 2.2497 9.5529 4.2168 2.6634 1.1695 2.0742 1.3283 1.0825

LSTMD 0.2288 0.2117 0.2045 0.2166 0.2648 0.2136 0.2034 0.2514

ESDNN 0.1966 0.1506 0.1500 0.1116 0.1930 0.1624 0.1716 0.1545

Transformer 0.1970 0.1535 0.1900 0.1484 0.1932 0.1665 0.1876 0.1736

FL-LSTM 0.1104 0.1138 0.1283 0.1105 0.1738 0.1806 0.1823 0.1748

30-minute-ahead

prediction

ARIMA 0.1984 0.1984 0.1984 0.1984 0.2226 0.2226 0.2226 0.2226

HBNN 6.5712 2.5329 2.6571 2.9125 1.7347 1.3602 1.0863 1.4502

LSTMD 0.2391 0.2087 0.1939 0.2083 0.2679 0.2373 0.2023 0.2064

ESDNN 0.1986 0.1508 0.1504 0.0935 0.1928 0.1650 0.1680 0.1389

Transformer 0.1261 0.1195 0.1739 0.1824 0.1557 0.1544 0.1841 0.1850

FL-LSTM 0.1123 0.1078 0.1096 0.1115 0.1779 0.1704 0.1661 0.1721

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 9

Nguyen Quoc Khanh, Tran Quang Duc, Nguyen Van Toan,...

FEDERATED LEARNING BASED WORKLOAD PREDICTION IN CLOUD COMPUTING

as ARIMA, which demonstrates consistently elevated
error rates (0.1983 across all ratios). FL-LSTM surpasses
more sophisticated methods such as HBNN, LSTMD,
ESDNN, and Transformer models. For 30-minute
forecasts, FLLSTM consistently exhibits superior
performance, achieving the lowest MSE values across
most train-test ratios. While ESDNN has marginally
superior performance at the 8:2 ratio (0.0935 compared to
FL-LSTM’s 0.1115), FL-LSTM exhibits enhanced
accuracy in situations with constrained training data (1:2,
2:2, and 4:2 ratios). This is especially beneficial for newly
deployed cloud services where previous data may be
limited.

The test results clearly show that FL-LSTM is better at
making predictions than other methods, no matter how far
into the future or how much training data is used.
Particularly noteworthy is FL-LSTM’s remarkable
performance when operating with limited training data
(train-test ratios of 1:2 or 2:2) on each client, where it
consistently outperforms traditional statistical methods
like ARIMA by significant margins and maintains an edge
over sophisticated deep learning approaches such as
HBNN, LSTMD, Transformer, and ESDNN. The
approach simultaneously preserves data privacy by
keeping sensitive CPU utilization metrics local to each
client while delivering superior prediction accuracy. This
advantage comes from two key benefits of FL-LSTM: the
FL mechanism effectively gathers and uses information
from various clients, and the improved LSTM layer design
accurately identifies time-related trends in CPU usage
data. Through multiple iterations of local training and
global aggregation, FL-LSTM enhances model robustness
and reduces prediction errors, especially in tasks for
predicting server load involving distributed virtual
machines with diverse load patterns. This makes FL-
LSTM particularly valuable in realworld cloud
environments where new virtual machines are
continuously created with short operational periods,
resulting in limited input data for prediction methods. In
such scenarios, the system can combine initially weak
models from individual VMs into a more accurate global
model without compromising data sensitivity or prediction
quality.

Table IV presents the execution times for ARIMA,
esDNN, HBNN, LSTMD, Transformer, and FL-LSTM.
FL-LSTM forecasts the future value of the CPU in 0.12
seconds, slightly above the execution times for HBNN and
LSTMD, which are 0.09 and 0.10 seconds, respectively.
Furthermore, esDNN requires an average of 0.50 seconds
to predict a workload sample. ARIMA forecasts future
values by averaging historical data and necessitates 6.94
seconds, the longest execution time among the evaluated
methods, to generate a prediction. Overall, FL-LSTM can
accurately predict future CPU values while requiring an
acceptable execution duration.

Table IV. The execution time (in seconds) of FL-
LSTM and other state-of-the-art methods.

Method Execution time
ARIMA 6.94
esDNN 0.50
HBNN 0.09
LSTMD 0.10

Transformer 0.13
FL-LSTM 0.12

FL-LSTM offers significant advantages beyond
execution time. By eliminating the need to gather and
process all training data at the server, it conserves both
network resources and processing time. Traditional
methods require encryption, decryption, and validation
steps during the transfer of data from clients to servers,
which FL-LSTM avoids. Moreover, in conventional
approaches, the server’s capabilities often determine the
overall scalability of the system. FL-LSTM mitigates this
limitation by distributing the computational load across
clients, potentially improving system scalability.

F. Ablation studies

This section examines the performance and behavior
of various federated learning algorithms for time series
forecasting under different operational conditions. We
focus on evaluating algorithm convergence across
multiple federation rounds and measuring performance
resilience when faced with client disconnections,
providing essential insights for real-world deployments.

Figure 3 evaluates the FL algorithms through each
iteration to determine the number of iterations that can
objectively assess the results of experimental FL
algorithms. Here, we use MSE as the loss indicator for
early stopping, Figures 3(a) and 3(b) represent the MSE of
each FL strategy in each round for the 2-step and 6-step
ahead predictions.

For the 2-step horizon prediction, most algorithms
(FaultTolerantFedAvg, FedAvg, FedMedian, FedProx,
and FedTrimmedAvg) show significant convergence by
round 3, with their MSE values stabilizing around 0.0048-
0.0052. After this point, the fluctuations in MSE values
become minimal (typically less than 5-10% change),
indicating that the algorithms have reached a relatively
stable state. The Krum algorithm demonstrates a similar
pattern, stabilizing around round 5 with an MSE of
approximately 0.0048. However, FedYogi exhibits
exceptional instability throughout all rounds, with
dramatic fluctuations in MSE values even after multiple
iterations (ranging from 0.006772 to 0.055009 between
rounds 6-7).

The 6-step horizon prediction follows similar
convergence patterns, with most algorithms stabilizing
around round 3-4, albeit with generally higher MSE values
due to the increased prediction difficulty. Based on these
observations, we can conclude that approximately 5
rounds of federation are sufficient for most algorithms to
reach stable performance in this time series forecasting
task, making it a reasonable threshold for comparative
evaluation of different federated learning strategies.

Table V presents the performance evaluation of the
FL-LSTM algorithm under different client disconnection
scenarios for both 10-minute and 30-minute prediction
horizons. Here, each iteration has 𝑛 (Disconnect rate * 𝐾)
clients that disconnect from the centralized server, and the
accuracy of each client takes the value from the last round
in which it was still able to connect to the server. For the

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 10

10-minute-ahead forecasting, we observe that the model
maintains relatively stable performance with disconnect
rates up to 37.5%, with MSE increasing gradually from
0.00476 (no disconnections) to 0.00567. However, when
the disconnect rate reaches 50%, the MSE significantly
jumps to 0.00955, representing a 100.6% increase
compared to the baseline, while MAE increases from
0.0500 to 0.0778. Similarly, for the 30-minute-ahead
predictions, the performance degradation follows a similar
pattern but starts from a higher baseline error (MSE of
0.00676 with no disconnections). As the disconnect rate
increases, the MSE steadily rises to 0.01151 at 50%
disconnection rate, representing a 70.3% increase in error.

These results demonstrate that the FL-LSTM algorithm
exhibits resilience to client disconnections up to
approximately one-third of participants, beyond which
prediction quality deteriorates substantially, particularly
for shorter-term forecasts.

V. CONCLUSIONS

In this paper, we introduced FL-LSTM, a novel CPU
utilization prediction method that combines Federated
Learning (FL) and Long Short-Term Memory (LSTM)
networks. FLLSTM offers inherent advantages by
mitigating communication expenses and enhancing system
scalability. Through comprehensive evaluation using
Google cluster traces and Azure Public Dataset V1, we
demonstrated that FL-LSTM outperforms most
benchmarks in terms of both Mean Squared Error (MSE)
and Mean Absolute Error (MAE).

While FL-LSTM shows slight inferiority to the
standard LSTM in some scenarios, its key strengths lie in
preserving data privacy and maintaining scalability. This is
achieved by storing training data locally and conducting the
training process exclusively on the client side.

Our future research directions include:

- Investigating different workload data characteristics to

further enhance the performance of FL-LSTM.

- Exploring clustering techniques for VMs or clusters

based on identified characteristics.

- Extending FL-LSTM to predict multiple related

workload metrics simultaneously (e.g., CPU usage,

memory usage, network traffic) within a multi-task

learning framework.

REFERENCES

[1] W.D.Patrick, Natural sciences citations and references. Y.
Wu, K. Hwang, Y. Yuan, and W. Zheng, “Adaptive

workload prediction of grid performance in confidence

windows,” IEEE Transactions on Parallel and Distributed

Systems, vol. 21, no. 7, pp. 925–938, 2009.

[2] V. Priya and C. N. K. Babu, “Moving average fuzzy

resource scheduling for virtualized cloud data services,”
Computer Standards & Interfaces, vol. 50, pp. 251– 257,

2017.

[3] X. Fu and C. Zhou, “Predicted affinity based virtual

machine placement in cloud computing environments,”

IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp.

246–255, 2017.

[4] R. Hu, J. Jiang, G. Liu, L. Wang et al., “Efficient resources

provisioning based on load forecasting in cloud,” The

Scientific World Journal, vol. 2014, 2014.

[5] S. Di, D. Kondo, and W. Cirne, “Google hostload prediction

based on bayesian model with optimized feature

combination,” Journal of Parallel and Distributed

Computing, vol. 74, no. 1, pp. 1820–1832, 2014.

Table V. MSE and MAE of FL-LSTM while
disconnect clients.

Horizon Disconnect rate MSE MAE

10-minute-

ahead

0.00% 0.00476 0.0500

12.50% 0.00493 0.0497

25.00% 0.00538 0.0530

37.50% 0.00567 0.0541

50.00% 0.00955 0.0778

30-minute-

ahead

0.00% 0.00676 0.0597

12.50% 0.00806 0.0694

25.00% 0.00944 0.0745

37.50% 0.00995 0.0754

50.00% 0.01151 0.0828

 (a) (b)

Figure 3. MSE of different FL strategies in each rounds. (a) and (b) represent the 2-step and 6-step ahead
predictions. We use 1:1 as training-testing rate.

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 11

Nguyen Quoc Khanh, Tran Quang Duc, Nguyen Van Toan,...

FEDERATED LEARNING BASED WORKLOAD PREDICTION IN CLOUD COMPUTING

[6] M. Xu, C. Song, H. Wu, S. S. Gill, K. Ye, and C. Xu,

“esdnn: deep neural network based multivariate workload

prediction in cloud computing environments,” ACM

Transactions on Internet Technology (TOIT), vol. 22, no. 3,

pp. 1–24, 2022.

[7] A. Rossi, A. Visentin, S. Prestwich, and K. N. Brown,

“Bayesian Uncertainty Modelling for Cloud Workload

Prediction,” IEEE International Conference on Cloud

Computing, CLOUD, vol. 2022-July, pp. 19–29, 2022. [8]

H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,

“Federated learning of deep networks using model

averaging,” CoRR, vol. abs/1602.05629, 2016. [Online].

Available: http://arxiv.org/abs/1602.05629

[8] J. Wilkes, “Yet more Google compute cluster trace data,”

Google research blog, Mountain View, CA, USA, Apr.

2020, posted at

[9] https://ai.googleblog.com/2020/04/yet-more-

googlecompute-cluster-trace.html.

[10] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload

characterization and prediction in the cloud: A multiple time
series approach,” in 2012 IEEE Network Operations and

Management Symposium. IEEE, 2012, pp. 1287–1294.

[11] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo,

“Comparison of arima and artificial neural networks models

for stock price prediction,” Journal of Applied Mathematics,

vol. 2014, no. 1, p. 614342, 2014.

[12] A. Rossi, A. Visentin, S. Prestwich, and K. N. Brown,

“Bayesian uncertainty modelling for cloud workload

prediction,” in 2022 IEEE 15th International Conference on

Cloud Computing (CLOUD). IEEE, 2022, pp. 19–29.

[13] B. Song, Y. Yu, Y. Zhou, Z. Wang, and S. Du, “Host load

prediction with long short-term memory in cloud

computing,” The Journal of Supercomputing, vol. 74, pp.

6554–6568, 2018.

[14] S. Gupta, A. D. Dileep, and T. A. Gonsalves, “A joint

feature selection framework for multivariate resource usage

prediction in cloud servers using stability and prediction

performance,” The Journal of Supercomputing, vol. 74, pp.

6033–6068, 2018.

[15] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of deep

networks from decentralized data,” 2023. [Online].

Available: https://arxiv.org/abs/1602.05629

[16] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett,

“Byzantine-robust distributed learning: Towards optimal

statistical rates,” CoRR, vol. abs/1803.01498, 2018.

[Online]. Available: http://arxiv.org/abs/1803.01498

[17] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J.

Konecný,ˇ S. Kumar, and H. B. McMahan, “Adaptive

federated optimization,” CoRR, vol. abs/2003.00295, 2020.

[Online]. Available: https://arxiv.org/abs/2003.00295

[18] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and

V. Smith, “Federated optimization in heterogeneous

networks,” Proceedings of Machine learning and systems,

vol. 2, pp. 429–450, 2020.

[19] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J.

Stainer, “Byzantine-tolerant machine learning,” CoRR, vol.

abs/1703.02757, 2017. [Online]. Available:

http://arxiv.org/abs/1703.02757

[20] V. Perifanis, N. Pavlidis, R.-A. Koutsiamanis, and
P. S. Efraimidis, “Federated learning for 5g base

station traffic forecasting,” Computer Networks,

vol. 235, p. 109950, 2023.

[21] Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang,

“Privacy-preserving traffic flow prediction: A

federated learning approach,” IEEE Internet of

Things Journal, vol. 7, no. 8, pp. 7751–7763, 2020.

[22] M. Savi and F. Olivadese, “Short-term energy consumption

forecasting at the edge: A federated learning approach,”

IEEE Access, vol. 9, pp. 95949–95969, 2021.

[23] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M.

Fontoura, and R. Bianchini, “Resource central:

Understanding and predicting workloads for improved

resource management in large cloud platforms,” in

Proceedings of the 26th Symposium on Operating Systems

Principles, 2017, pp. 153–167.

DỰ BÁO TẢI TRONG ĐIỆN TOÁN ĐÁM MÂY SỬ

DỤNG HỌC LIÊN HỢP

Tóm tắt: Dự đoán tải CPU là một bài toán đầy thách

thức trong điện toán đám mây do bản chất biến động của

việc sử dụng CPU. Hơn nữa, việc thu thập dữ liệu sử dụng

CPU từ nhiều máy ảo để phát triển phương pháp dự đoán

làm dấy lên những lo ngại về quyền riêng tư dữ liệu, chi

phí truyền tải và khả năng mở rộng hệ thống. Để giải quyết

những thách thức trên, nghiên cứu giới thiệu giải pháp FL-

LSTM, một kỹ thuật dự đoán tải kết hợp mạng Long short-

term memory (LSTM) với học liên hợp (Federated

Learning). Trong phương pháp FL-LSTM, mỗi máy khách

sử dụng LSTM cùng với dữ liệu tải CPU cục bộ của nó để

tạo ra mô hình cục bộ. Các mô hình cục bộ này sau đó được

tổng hợp để hình thành một mô hình toàn cục sử dụng thuật

toán Trung bình hóa Liên kết (FedAvg) tiêu chuẩn. Chúng

tôi đã tiến hành đánh giá toàn diện về FL-LSTM sử dụng

dữ liệu tải của tám cụm Google và tám cụm của Bộ dữ

liệu Azure. Kết quả của chúng tôi chứng minh rằng

FedAvg vượt trội hơn các chiến lược FL thay thế, trong

khi FL-LSTM có độ chính xác đạt hoặc vượt qua của các

phương pháp tiên tiến khác trong dự đoán tải trọng đám

mây. Đáng chú ý, FL-LSTM đạt được MAE là 0,00438,

cho thấy sự cải thiện về độ chính xác lần lượt là 74,7% và

9,4% ứng với với ARIMA và HBNN. Những phát hiện này

nhấn mạnh tiềm năng của FL-LSTM như một giải pháp

hiệu quả để dự đoán nhu cầu CPU trong môi trường điện

toán đám mây.

Từ khóa: Dự đoán tải CPU, Điện toán đám mây, Học

Liên hợp, LSTM

Nguyen Quoc Khanh, PhD
student at the School of
Information and Communication
Technology, Hanoi University of
Science and Technology.
Research areas: machine learning,
cloud computing, information
security.

Email:
khanh.nq@soict.hust.edu.vn

Tran Quang Duc, received his
PhD in 2015 and became an
Associate Professor in 2020.
Currently working at the School of
Information and Communication
Technology, Hanoi University of
Science and Technology.
Research areas: machine learning,
biometrics, information security.

Email: ductq@soict.hust.edu.vn

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 12

Nguyen Van Toan, Ph.D. (2018),
is currently working as a
researcher at Salesforce, Inc.,
United States. His research
interests include security,
infrastructure security, cloud
computing, and human-computer
interaction.

Email:
nguyentoan@salesforce.com

Tong Van Van , Ph.D. (2021), is
currently a faculty member at the
School of Information and
Communication Technology,
Hanoi University of Science and
Technology. His research interests
include machine learning,
information security, and
blockchain technology.

Email: vantv@soict.hust.edu.vn

SOÁ 01 (CS.01) 2025 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG 13

Nguyen Quoc Khanh, Tran Quang Duc, Nguyen Van Toan,...

