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Abstract: Predicting CPU demand is a major challenge 

in cloud computing due to the volatile nature of CPU 

utilization. Moreover, gathering CPU utilization data from 

multiple virtual machines to develop a prediction method 

raises concerns about data privacy, transmission costs, and 

system scalability. To address these challenges, this paper 

introduces FL-LSTM, a novel workload prediction 

technique that combines long short-term memory 

networks (LSTM) with federated learning (FL). In the FL-

LSTM approach, each client uses LSTM along with its 

local CPU utilization data to create a local model. These 

local models are then aggregated to form a global model 

using the standard Federated Averaging (FedAvg) 

algorithm. We conducted a thorough evaluation of FL-

LSTM using eight clusters of Google cluster traces and 

eight clusters of the Azure Public Dataset. Our results 

demonstrate that FedAvg outperforms alternative FL 

strategies, while FL-LSTM meets or surpasses the 

performance of other state-of-the-art methods for cloud 

workload prediction. Notably, FL-LSTM achieved a Mean 

Squared Error of 0.00438, representing improvements of 

74.7% and 9.4% compared to ARIMA and HBNN, 

respectively. These findings highlight the potential of FL-

LSTM as an effective solution for predicting CPU demand 

in cloud computing environments. 

Keywords: CPU usage prediction, Cloud computing, 

Federated Learning, LSTM. 

I. INTRODUCTION 

Cloud computing has seen remarkable growth in recent 
years, with more enterprises leveraging services and 
applications on platforms like Amazon AWS, Google 
Cloud, and Alibaba. These providers enable businesses to 
autonomously procure cloud resources, deploy scalable 
solutions, and improve cost efficiency. Cloud computing 
providers aim to preconfigure servers in advance to ensure 
enhanced Quality of Service (QoS), characterized by 
minimal latency, high availability, and reliable 
performance. Accurate forecasting of CPU demand allows 
providers to anticipate improved QoS indicators and 
optimize resource utilization by reducing the number of 
preconfigured idle machines or allocated but unused 

resources. However, predicting cloud workload demands 
is challenging due to their variability, massive scale, 
diverse nature, and fluctuations. 

The research community has demonstrated 
considerable interest in predicting CPU consumption. 
Given that CPU consumption rates are recorded as time-
series data, their forecasting can be regarded as a time-
series prediction challenge. Forecasting CPU utilization 
employs techniques such as Auto Regression (AR) [1], 
Moving Average (MA) [2], Autoregressive Integrated 
Moving Average (ARIMA) [3], Support Vector 
Regression (SVR) [4], Bayesian classifiers [5], efficient 
supervised learning-based Deep Neural Networks 
(esDNN) [6], and Long Short-Term Memory Networks 
(LSTMs) [7], each exhibiting varying degrees of efficacy 
in generating precise predictions. Traditionally, these 
techniques can be executed using two distinct 
methodologies. The initial approach involves utilizing 
data from a singular virtual machine (VM) to develop the 
predictive models. It has encountered the issue of data 
scarcity, particularly when implemented in a new VM. The 
second approach is executed in a centralized fashion, with 
training conducted on a central server utilizing CPU data 
aggregated from multiple VMs or clusters. Centralized 
prediction techniques have problems with system 
scalability and data protection. The scalability challenge 
pertains to the escalating difficulty of capturing, storing, 
and analyzing all data at a centralized server. For example, 
Google cluster traces comprised data from eight distinct 
Borg cells, with a compressed size of approximately 2.4 
TB. The data privacy issue pertains to the sensitive nature 
of CPU utilization data, which is considered a vital metric 
for evaluating the performance of services and 
applications, especially in VMs and servers. Safeguarding 
CPU consumption data is crucial for all businesses 
utilizing cloud computing services. 

In this paper, we address the challenges of cloud 
workload prediction with limit data by applying LSTM 
and Federated Learning (FL). Introduced by Google in 
2016, FL is a framework where multiple clients 
collaboratively train a machine learning model while 
maintaining the privacy of their data under the 
coordination of a central aggregator. FL has the potential 
to transform critical domains, including CPU consumption 
forecasting. Our paper makes the following contributions: 

- We introduce FL-LSTM, a combination of LSTM and 

Federated Averaging [8]. To our knowledge, this is the first 

attempt to estimate future CPU demands in cloud 
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computing systems using FL. Previous studies have 

focused on optimizing power consumption or the number 

of virtual machines in the system. Given the sensitive 

nature and volume of workload training data in cloud 

systems, our approach is crucial for addressing privacy and 

scalability issues 

- We conducted a comprehensive evaluation of FL-

LSTM using CPU traces from eight Google clusters [9]. 

Our results demonstrate that Federated Averaging 

outperforms other FL strategies, including 

FaultTolerantFedAvg, FedAdagrad, FedMedian, 

FedTrimmedAvg, and Krum. Moreover, FL-LSTM has 

shown superiority over well-established techniques, with 

MSE improvements of 74.7% and 9.4% compared to 

ARIMA and HBNN, respectively. 

The remainder of this paper is structured as follows: 
Section II reviews relevant studies on workload prediction 
using statistical methods and machine learning techniques, 
and provides an overview of FL. Section III presents a 
detailed description of the proposed workload prediction 
mechanism utilizing the LSTM model and FL. Section IV 
discusses the experimental setup and findings. Finally, 
Section V concludes the paper and suggests potential 
directions for future research. 

II. BACKGROUND AND RELATED WORK 

A. CPU usage prediction methods 

CPU utilization forecasting techniques can be broadly 
categorized into statistical and machine learning-based 
approaches. Among statistical methods, Wu et al. [1] 
combined Kalman filter and Auto Regression to enhance 
CPU usage predictions while mitigating measurement 
inaccuracies. Fu and Zhou [3] employed ARIMA to 
forecast CPU values, addressing VM deployment issues in 
data centers and determining VM affinities. Khan et al. 
[10] explored Hidden Markov Models (HMM) to detect 
temporal relationships between VMs and predict CPU 
pattern variations. However, AR, ARIMA, and HMM 
have shown limitations in handling non-linearity in CPU 
time series and tend to underperform on time series with 
temporal variability, complex characteristics, or sudden 
shifts [11], [12]. 

Machine learning models offer advantages in learning 
non-linear correlations among data samples and have 
demonstrated effectiveness across various time series data. 
Di et al. [5] extracted features characterizing host load 
fluctuation and utilized Bayes classifier to improve long-
term load predictions. Minxian et al. [6] introduced an 
efficient supervised learning-based deep neural network 
(esDNN) that transforms multivariate data into time series 
using a sliding window, modifying gate recurrent units to 
address CPU rate fluctuations and gradient vanishing 
problems. 

Long Short-Term Memory (LSTM) networks, a type 
of recurrent neural network, have shown effectiveness in 
many comparative studies [13], [14]. Owing to its gating 
mechanism, the Long Short-Term Memory (LSTM) 
model effectively captures and associates patterns from 
distant past sequences, making it particularly well-suited 
for time series data such as server load, which often 
exhibits complex cyclical or trending behaviors. Unlike 

traditional models, LSTM does not rely on assumptions of 
linearity or stationary states, enabling it to adapt flexibly 
to nonlinear and heterogeneous datasets. Furthermore, 
LSTM requires relatively modest data volumes and 
computational resources, rendering it practical for a wide 
range of realworld applications. Rossi et al. [12] further 
refined this approach with Probabilistic LSTM (LSTMD) 
to reduce uncertainty stemming from statistical 
characteristics of observations. 

While LSTM, esDNN, and LSTMD have shown 
promise, their training typically occurs on a central server 
using data collected from various VMs—a centralized 
learning approach. This method faces challenges in 
managing the vast data volumes generated by continuous 
cloud computing operations and raises concerns about data 
anonymity. Federated Learning (FL) emerges as a 
potential solution to these challenges. 

B. Federated Learning 

Federated Learning (FL), proposed by McMahan et al. 
[15], is a framework where a central server coordinates the 
training of a shared global model across a federation of 
participating client devices. The foundational algorithm of 
FL, Federated Averaging (FedAvg), was introduced by 
McMahan et al. [8]. In each FedAvg iteration, a subset of 
clients is selected, typically randomly, and the server 
distributes its global model to each client. Clients then 
perform Stochastic Gradient Descent (SGD) on their local 
loss functions and transmit the trained models back to the 
server. The server updates its global model by averaging 
these local models. FaultTolerantFedAvg extends this 
approach by incorporating fault-tolerant methods to 
handle device dropouts, enhancing FL’s resilience in 
heterogeneous and variable network environments. 

Yin et al. [16] developed two robust distributed 
gradient descent algorithms: median-based gradient 
descent (FedMedian) and trimmed-mean-based gradient 
descent (FedTrimmedAvg). Both techniques achieve 
order-optimal statistical error rates for strongly convex 
losses, with FedTrimmedAvg showing superior rates 
when local sample sizes are limited. 

Reddi et al. [17] introduced adaptivity through 
adaptive optimizers for both client and server optimization 
- FedOptFedOpt. Their federated variants—FedAdagrad, 
FedYogi, and FedAdam—demonstrate improved 
convergence in nonconvex settings with heterogeneous 
data, enhancing overall FL performance. 

FedProx [18] is a federated optimization framework 
designed to address both statistical and systems 
heterogeneity in distributed networks. By introducing a 
proximal term to the local objective function, FedProx 
restricts local updates to remain closer to the global model, 
mitigating divergence caused by nonIID data. 
Additionally, it allows clients to perform variable amounts 
of work (partial solutions) based on their resource 
constraints, thereby improving robustness against 
stragglers. 

Addressing Byzantine resilience, Blanchard et al. [19] 
presented Krum, which guarantees convergence in the 
presence of 𝑓 Byzantine adversaries among 𝑛 total clients. 
Krum combines squared-distance and majority-based 
methodologies, selecting the vector that minimizes the sum 
of squared distances to its 𝑛 − 𝑓  nearest vectors. This 
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approach exhibits a time complexity of 𝑂(𝑛2 ⋅ 𝑑), where 𝑑 
represents the parameter vector dimension. 

III. METHODOLOGY 

Conventional centralized CPU prediction 
methodologies typically involve three sequential stages: 
data processing, compilation, and model building. These 
approaches require data acquisition from numerous 
distinct VMs, leading to potential drawbacks such as data 
privacy concerns, data transfer costs, and scalability 
challenges. Moreover, the centralized server represents a 
single point of failure, risking data loss in the event of a 
crash. 

To address these challenges, we propose FL-LSTM, a 
novel approach combining Long Short-Term Memory 
(LSTM) networks with Federated Learning (FL). In FL-
LSTM, each VM or cluster is treated as a client. Let 𝐾 
represent the total number of clients and 𝐷𝑘  denote the 
local CPU utilization dataset for client 𝑘 . FL-LSTM 
achieves high scalability by allowing each client to 
construct a local training model on its CPU load dataset. 
Figure 1(a) illustrates the comprehensive design of FL-
LSTM, while Algorithm 1 provides its pseudocode. 

In each iteration, the algorithm chooses a subset 𝑆𝑡 
from the total 𝐾 clients. The selection of the client subset 

𝑆𝑡 plays a pivotal role in simulating real-world scenarios, 
where not all clients are consistently available due to 
resource or connectivity constraints, particularly in 
systems with a large number of clients. As established in 
the foundational work by McMahan [15], the standard 
approach involves randomly selecting a fraction 𝐶  of 

clients, with the number of selected clients determined by 
𝑚 = 𝑀𝐴𝑋(𝐶 ∗ 𝐾, 1) , ensuring that at least one client 
participates in each round. However, in this study, 𝑆𝑡  is 
chosen to include all available clients to minimize the 
impact of random selection on the evaluation of model 
performance. Subsequent sections will explore 
experimental configurations where only a subset of clients 
is active in each round, providing a more comprehensive 
analysis of the algorithm’s performance under varying 
participation levels. 

Each client 𝑘  receives the global model 𝐰𝑡−1  and 
trains its local model on the dataset 𝐷𝑘 . FL-LSTM 
employs LSTM for local training, which possesses 
inherent benefits in cloud workload forecasting and 
surpasses alternative methods in numerous comparative 
analyses (see to Section II for further details). 

Figure 1(b) depicts the LSTM architecture 
implemented within our FL-LSTM framework. The 
proposed model conceptualizes CPU prediction as a time 
series forecasting challenge, leveraging sequential CPU 
utilization measurements to forecast future resource 
consumption. The architecture comprises a precisely 
calibrated six-layer configuration: three LSTM layers for  

 
 

 

(a) (b) 

Figure 1.  (a) The architecture of FL-LSTM, (b) LSTM-based workload predict 
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hierarchical temporal feature extraction, two dropout 
layers for model regularization, and a terminal dense layer 
for prediction synthesis. The configuration of the three 
LSTM layers establishes a hierarchical feature extraction 
mechanism capable of capturing multi-scale temporal 
patterns inherent in workload data. Specifically, the initial 
layer extracts short-term fluctuations (e.g., hourly 
variations), the intermediate layer identifies medium-term 
trends (i.e., trends characterized by elevated usage during 
business hours), and the final layer considers long-term 
patterns (e.g., weekly periodicity). This multi-scale 
approach proves particularly useful in characterizing 
complex temporal dynamics across various time horizons. 
To fortify the model’s generalization capabilities, we 
integrate two dropout layers parameterized by dropout rate 
𝑝 . These dropout layers stochastically deactivate input 
units during the training phase. Such regularization 
methodology is critical within our federated learning 
paradigm, wherein the model must effectively aggregate 
heterogeneous features from distributed clients exhibiting 
potentially divergent load patterns. The dropout 
mechanism mitigates the model’s propensity to overfit 
specific training data patterns, instead facilitating the 
acquisition of robust features that generalize effectively 
across dynamic server load conditions. The architectural 
configuration culminates in a dense layer employing linear 
activation, which maps the extracted temporal features to 
a continuous CPU utilization prediction. This terminal 
configuration is well-suited for the regression problem at 
hand and has demonstrated exceptional predictive 
accuracy through extensive experimental evaluations. We 
have diligently evaluated and optimized critical LSTM 
parameters (such as dropout rate, batch size, and input 
shape) to enhance the model’s predictive accuracy. 

During the training process, local LSTM model 
parameter updates, denoted as 𝐰𝑘

𝑡 , are transmitted to the 
central server. The server aggregates these updates to 
update the global model 𝐰𝑡  using FL strategies. In FL-
LSTM, we employ FedAvg to combine client models by 
averaging their parameters: 

𝐰𝑡 =
1

|𝑆𝑡|
∑ 𝐰𝑘

𝑡

𝑘∈𝑆𝑡

 (1) 

 

FedAvg offers reduced privacy risks compared to 
central server storage, as weight updates are managed in 
memory and removed following aggregation. This 
approach has been successfully applied to various time 
series forecasting challenges, including 5G base station 
traffic prediction [20], vehicle count forecasting [21], and 
short-term energy usage prediction [22]. The present work 
demonstrates the advantages of FedAvg over alternative 
aggregating functions for workload predictions. A 
comprehensive examination of these benefits will be 
presented in the subsequent section. 

The stopping criteria of the FL-LSTM algorithm 
consist of two main parameters: the number of 
communication rounds 𝑇  and the number of epochs 
executed by each client. In real-world cloud workload 
prediction systems, servers typically operate continuously, 
with clients being dynamically initialized or released as 
needed. However, for our implementation of FL-LSTM, 
we set 𝑇 to a specific value based on experimental results 
that demonstrated optimal performance-efficiency 
tradeoffs. Regarding the number of epochs on each client, 
we implement an early stopping mechanism based on 
validation loss. This approach ensures that when the global 
model reaches sufficient quality, the local LSTM training 
on each client will terminate once the validation loss stops 
improving, preventing overfitting and reducing 
unnecessary computational costs while maintaining 
prediction accuracy. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset specification 

This study utilizes Google cluster traces [9] and Azure 
Public Dataset V1 [23] to investigate FL-LSTM and other 
algorithms. We acquired cloud cluster traces from the 
Google Cloud Platform , which provide resource 
utilization information for eight Borg cells throughout 
May 2019. The dataset focuses on resource requests and 
usage, excluding details about end users, their data, or 
access patterns to storage systems and other services. We 
specifically use the CPU usage table, which contains 
information histograms for every 5-minute interval. Due to 
its substantial size (approximately 2.4TB compressed), the 
trace data is only accessible through Google BigQuery 
(https://cloud.google.com/bigquery). The Azure Public 
Dataset V1 comprises CPU traces for 2,013,767 virtual 
machines monitored over a three-month duration from 
November 2016 to February 2017. Each virtual machine 
has a minimum of 28 consecutive days of CPU load data, 
recorded at five-minute intervals. We randomly selected 8 
clusters to assess our proposed technique. 

We generated datasets encompassing the average CPU 
loads of all VMs at 5-minute intervals for each cluster. To 
expedite the training process and enhance convergence, 
we applied Max-Min scaling to normalize the data within 
the [0,1] range. This resulted in eight datasets, each 
containing approximately 8,000 data points of CPU 
utilization. 

Algorithm 1: FL-LSTM 

1: Input: 

- 𝑇 is the number of FL rounds 

- 𝐾 is the total number of clients that are indexed by 𝑘 

- 𝐷𝑘 is the local dataset of client 𝑘 

2: Initialize global model parameters 𝐰0  

3: For each round 𝑡 do 

4:      Select a subset 𝑆𝑡 of 𝐾 clients  

5:      Send 𝐰𝑡−1 to the clients that are elements of 𝑆𝑡  

6:      For each client 𝑘 ∈ 𝑆𝑡 in parallel do:  

7:                      𝐰𝑘
𝑡 ← LSTM(𝐰𝑘

𝑡−1, 𝐷𝑘)  

8: Determine the global model updates, i.e., 

𝐰𝑡 ←
1

|𝑆𝑡|
∑ 𝐰𝑘

𝑡

𝑘∈𝑆𝑡

 

 

9: Output: The global model 𝐰𝑇 
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Our experiments produce forecasts for two distinct 
time frames: 10 and 30 minutes in advance, representing 
2- and 6-step trajectories of Google cluster traces, 
respectively. We employ multiple horizons to assess the 
ability of FL-LSTM and other methods to manage 
fluctuating CPU loads over time, given that an effective  
regressor for one horizon may not produce precise 
predictions for others. For each horizon, the last 20% of 
the data from each cluster was employed as the testing set 
for predictive outcomes. Additionally, we utilized 10%, 
20%, 40%, and 80% of the data immediately before the 
evaluation set for model training, yielding train-test ratios  
of 1:2, 2:2, 4:2, and 8:2, respectively. By keeping the 
testing set the same while incrementally augmenting the 
training data, we seek to illustrate the efficacy of the FL-
LSTM algorithm in producing accurate predictions, even 
with limited data for each cluster. The evaluation was 
performed on a machine equipped with a 20-core Intel i7 
processor and 256 GB of RAM. The experiments in this 
study were simulated by running both the server and 
clients in parallel on a single workstation with the 
specified configuration. For a client equipped with a dual-
core Intel i3 CPU and 4GB of RAM, training an LSTM 
model over 20 epochs required approximately 30 seconds 
per iteration. 

B. Performance metrics 

To evaluate the precision of FL-LSTM and several 
other methods, we employ Mean Squared Error (MSE) and 
Mean Absolute 

Error (MAE), consistent with previous studies [3], [6], 
[12]. These metrics are calculated as follows: 

  

MSE =
∑ (𝑇

𝑡=1 𝑥(𝑡) − 𝑥̂(𝑡))2

𝑇
 (2) 

 

MAE =
∑ |𝑇

𝑡=1 𝑥(𝑡) − 𝑥̂(𝑡))|

𝑇
(3) 

where T represents the number of samples, x(t) denotes the 
actual value of the t-th sample, and xˆ(t) represents the 
associated predicted value. MSE calculates the squared 
difference between x(t) and xˆ(t), while MAE denotes the 
absolute difference. Lower MSE and MAE values indicate 
better performance. 

In the following subsections, we present the 
experimental results of our proposed methods and 
compare them with state-of-the-art studies 

 

C. Comparison with the standard LSTM and Centralized 
LSTM 

This section measures the performance of the FL 
architecture in enhancing the accuracy compare to the 
traditional LSTM model and the centralized LSTM 
architecture for prediction with constrained input data. The 
traditional LSTM model operates independently on each 
cluster, training on local data and making predictions 
accordingly. Otherwise, the centralized LSTM is designed 
to collecting all training data from clusters on a server and 
training one global model to generate predictions for all 
clusters. Table I show the MSE and MAE of the standard 
LSTM, centralized LSTM and FL-LSTM in different 
setups. 

In 10-minute-ahead prediction, FL-LSTM consistently 
achieves the lowest MSE values across all train-test ratios, 
indicating superior performance in error minimization 
compared to LSTM and the centralized LSTM. For 
instance, at the 1:2 ratio, FL-LSTM achieves an MSE of 
0.0053 compared to 0.0062 of LSTM. Similarly, for MAE, 
FL-LSTM generally outperforms, particularly at the 1:2 
ratio. However, the centralized LSTM shows competitive 
performance with FL-LSTM at ratios of 4:2 and 8:2. 

In 30-minute-ahead prediction, FL-LSTM exhibits the 
lowest predictive errors at 1:2, 2:2, and 4:2 ratios with 
MSEs of 0.0076, 0.0068, and 0.0070, respectively. For 
example, at a ratio of 1:2, FL-LSTM achieves MSE, which 
is 12.64% better compared to the MSE of LSTM (0.0087). 
Regarding MAE, FL-LSTM maintains an advantage 
across most ratios, particularly with the smallest value 
(0.0597) observed at 2:2. 

Increasing the training dataset size reduces the MSE for 
all models in most cases, showing that more training data 
enhances performance. For example, FL-LSTM’s MSE 
drops from 0.0053 at 1:2 to 0.0044 at 8:2 for the 10-
minute-ahead prediction. Similarly, MAE decreases with 
larger train-test ratios, highlighting the generalization 
capability improvement with more training data. FL-
LSTM consistently outperforms other models across both 
short (10-minute) and long (30-minute) prediction 
horizons in the limited data scenarios, where the train-test 
ratios are 1:2 or 2:2, confirming its superior performance 
and opening up the potential for deploying this solution in 
practice. 

D. Comparison with other FL strategies 

FL-LSTM employs FedAvg for federated aggregation. 
We compare it with various other aggregation algorithms 

Table I.  MSE and MAE of the standard LSTM, centralized LSTM and FL-LSTM 

Horizon 

  MSE   MAE  

Train-test ratio 1:2 2:2 4:2 8:2 1:2 2:2 4:2 8:2 

10-minute-

ahead prediction 

LSTM 0.0062 0.0049 0.0054 0.0048 0.0564 0.0517 0.0552 0.0518 

Centralized LSTM 0.0054 0.0055 0.0048 0.0045 0.0532 0.0555 0.0498 0.0477 

FL-LSTM 0.0053 0.0048 0.0050 0.0044 0.0534 0.0500 0.0520 0.0484 

30-minute-

ahead prediction 

LSTM 0.0087 0.0069 0.0072 0.0067 0.0688 0.0613 0.0635 0.0606 

Centralized LSTM 0.0101 0.0089 0.0072 0.0077 0.0768 0.0722 0.0607 0.0673 

FL-LSTM 0.0076 0.0068 0.0070 0.0071 0.0661 0.0597 0.0625 0.0640 
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reported in the literature, including FaultTolerantFedAvg, 
FedYogi, FedMedian, FedOpt, and Krum (refer to Section  

II for complete details). We assess these methodologies for 
forecasting CPU rates at 2 and 6 steps in advance. To 
ensure a fair comparison between FL-LSTM and 
alternative benchmarks, we utilize 20% of the total number 
of data samples for testing purposes for all scenarios while 
increasing training data. 

Figure 2 illustrates the MSE and MAE of several 
Federated Learning (FL) procedures across the different 
train-test ratios. In summary, FedAvg produces superior 
prediction outcomes across both time horizons. It is 
important to note that while most FL algorithms are 
designed to address non-independent and identically 
distributed data issues, this may not be a primary concern 
for CPU utilization prediction in our context. 

E. Comparison with other state-of-the-art methods 

The aim of this section is to compare FLLSTM to other 
state-of-the-art methods, such as ARIMA [3], esDNN [6], 
[3], HBNN [12], and LSTMD [12]. ARIMA is a statistical 
analysis model that integrates autoregression and moving 
averages to forecast future trends using time series data. 
esDNN offers a supervised learning-based Deep Neural 
Network for predicting short-term CPU workload. HBNN 
uses Bayesian Neural Networks to forecast future 
workloads, whereas LSTMD applies the probabilistic 
LSTM for estimating future workload values. 

In addition to the above methods, this paper also 
considers the Transformer model, which is a specialized 

type of neural network architecture. In this experiment, the 
Transformer model uses four stacked encoder blocks with 
multi-head self-attention (4 heads, key dimension 256), 
layer normalization, and a feed-forward network with 
convolutional and dropout layers. It applies global average 
pooling, followed by a dense layer (128 units, ReLU) and 
a single-unit output layer. 

Table II clarifies the performance metrics of FL-
LSTM, ARIMA, esDNN, HBNN, Transformer, and 
LSTMD utilizing Google cluster traces. Throughout all 
experiments, ARIMA consistently exhibited the worst 
performance relative to the other methods, and its accuracy 
does not change while increasing the training data. On the 
other hand, the other methods show improvement with 
more training data. 

For the 10-minute-ahead prediction task, FL-LSTM 
demonstrates remarkable superiority across all train-test 
ratios. At a traintest ratio of 1:2, FL-LSTM achieves an 
MSE of 0.00526, representing significant improvements 
of 69.57%, 80.25%, 26.18%, and 13.35% compared to 
ARIMA, HBNN, LSTMD, and ESDNN, respectively. The 
performance of FL-LSTM shows consistent enhancement 
with increased training data, with its MSE decreasing from 
0.00526 at a traintest ratio of 1:2 to an impressive 0.00438 
at a ratio of 8:2. Notably, FL-LSTM outperforms all other 
methods across all evaluated ratios in terms of MSE. For 
the MAE metric, there is a minor exception at a train-test 
ratio of 4:2, where the deviation between FL-LSTM and 

 

 

Figure 2.  MSE and MAE of different FL strategies when used to render predictions. (a) and (c) represent the 2-step 
ahead predictions. (b) and (d) represent the 6-step ahead predictions. We use 20% of the total number of 

samples for testing. 
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LSTMD is negligible (0.0520 and 0.0519), indicating 
comparable performance in this specific scenario. 
Nevertheless, FL-LSTM regains its lead at the 8:2 ratio 
with the lowest MAE of 0.0484. When comparing with  

 

Transformer, FL-LSTM demonstrates particularly 
impressive results. The Transformer model shows poor 
performance at lower training data volumes. Its MSE 
(0.03933 at 1:2 ratio) is 86.6% higher than that of FL-
LSTM. Even at the highest train-test ratio of 8:2, where 
Transformer improves significantly to an MSE of 0.00513,  

FL-LSTM still outperforms it with an MSE of 0.00438, 
representing a 14.6% improvement. The HBNN model 
exhibits the most dramatic improvement as training data 
increases, with MSE reducing from 0.02664 at a 1:2 ratio 
to 0.00483 at an 8:2 ratio, suggesting high data 
dependency. Applying the exact same configuration as in 
[12] (traintest ratio of 8:2), the MSE of FL-LSTM is 
0.00438, showing substantial improvements of 74.7% and 
9.4% compared to ARIMA and HBNN, respectively. 

For the more challenging 30-minute-ahead prediction 
task, FL-LSTM maintains its superiority at lower train-test 
ratios ranging from 1:2 to 4:2, consistently achieving the 
lowest MSE and MAE values compared to other methods. 
At the 1:2 ratio, FL-LSTM’s MSE of 0.00764 outperforms 

Transformer by 72.3% (Transformer’s MSE: 0.02756) and 
HBNN by 77.0% (HBNN’s MSE: 0.03321). As the train-
test ratio increases to 8:2, HBNN slightly edges ahead with 
an MSE of 0.00681 compared to FL-LSTM’s 0.00711,  

 

marking a 4.2% difference. However, considering 
FLLSTM’s consistently superior performance across 
multiple ratios and metrics, this minor difference does not 
diminish its overall effectiveness. Furthermore, even at the 
8:2 ratio, FL-LSTM still outperforms Transformer (MSE: 
0.00806) by 11.8%. The Transformer model continues to 
show high sensitivity to training data volume in the 30-
minuteahead prediction, with inconsistent improvement 
patterns when increasing from the 1:2 to 4:2 ratios. Its 
MSE marginally improves to 0.02376 at 2:2 but then 
deteriorates to 0.02738 at 4:2, suggesting instability in 
learning longer-term dependencies with varying data sizes. 

Table III displays performance measures that compare 
FL-LSTM with various stateof-the-art methodologies on 
the Azure Public dataset, thereby substantiating FL-
LSTM’s exceptional efficacy in forecasting CPU 
consumption. For predictions made 10 minutes in advance, 
FL-LSTM consistently attains the minimal MSE values 
across all traintest ratios (0.1104 at 1:2, 0.1138 at 2:2, 
0.1283 at 4:2, and 0.1105 at 8:2). This indicates substantial 
enhancements compared to conventional approaches such 

Table II.  MSE and MAE of FL-LSTM and other state-of-the-art methods on Google Trace Dataset 

Horizon 

  MSE   MAE  

Train-test ratio 1:2 2:2 4:2 8:2 1:2 2:2 4:2 8:2 

10-minute-ahead 

prediction 

ARIMA 0.01730 0.01730 0.01729 0.01730 0.1031 0.1031 0.1031 0.1031 

HBNN 0.02664 0.01180 0.01248 0.00483 0.1270 0.0846 0.0904 0.0504 

LSTMD 0.00713 0.00580 0.00519 0.00489 0.0612 0.0552 0.0518 0.0508 

ESDNN 0.00607 0.00554 0.00579 0.00566 0.0577 0.0555 0.0571 0.0572 

Transformer 0.03933 0.01125 0.01185 0.00513 0.1517 0.0805 0.0797 0.0547 

FL-LSTM 0.00526 0.00476 0.00502 0.00438 0.0534 0.0500 0.0520 0.0484 

30-minute-ahead 

prediction 

ARIMA 0.01752 0.01752 0.01752 0.01752 0.1038 0.1038 0.1038 0.1038 

HBNN 0.03321 0.01725 0.00750 0.00681 0.1346 0.0940 0.0642 0.0602 

LSTMD 0.01389 0.00913 0.00954 0.00759 0.0892 0.0713 0.0722 0.0648 

ESDNN 0.00788 0.00816 0.00874 0.00775 0.0661 0.0687 0.0705 0.0670 

Transformer 0.02756 0.02376 0.02738 0.00806 0.1318 0.1170 0.1251 0.0694 

FL-LSTM 0.00764 0.00676 0.00703 0.00711 0.0661 0.0597 0.0625 0.0640 

Table III.  MSE and MAE of FL-LSTM and other state-of-the-art methods on Azure Public dataset 

Horizon 

 MSE MAE 

Train-test ratio 1:2 2:2 4:2 8:2 1:2 2:2 4:2 8:2 

10-minute-ahead 

prediction 

ARIMA 0.1983 0.1983 0.1983 0.1983 0.2229 0.2229 0.2229 0.2229 

HBNN 2.2497 9.5529 4.2168 2.6634 1.1695 2.0742 1.3283 1.0825 

LSTMD 0.2288 0.2117 0.2045 0.2166 0.2648 0.2136 0.2034 0.2514 

ESDNN 0.1966 0.1506 0.1500 0.1116 0.1930 0.1624 0.1716 0.1545 

Transformer 0.1970 0.1535 0.1900 0.1484 0.1932 0.1665 0.1876 0.1736 

FL-LSTM 0.1104 0.1138 0.1283 0.1105 0.1738 0.1806 0.1823 0.1748 

30-minute-ahead 

prediction 

ARIMA 0.1984 0.1984 0.1984 0.1984 0.2226 0.2226 0.2226 0.2226 

HBNN 6.5712 2.5329 2.6571 2.9125 1.7347 1.3602 1.0863 1.4502 

LSTMD 0.2391 0.2087 0.1939 0.2083 0.2679 0.2373 0.2023 0.2064 

ESDNN 0.1986 0.1508 0.1504 0.0935 0.1928 0.1650 0.1680 0.1389 

Transformer 0.1261 0.1195 0.1739 0.1824 0.1557 0.1544 0.1841 0.1850 

FL-LSTM 0.1123 0.1078 0.1096 0.1115 0.1779 0.1704 0.1661 0.1721 
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as ARIMA, which demonstrates consistently elevated 
error rates (0.1983 across all ratios). FL-LSTM surpasses 
more sophisticated methods such as HBNN, LSTMD, 
ESDNN, and Transformer models. For 30-minute 
forecasts, FLLSTM consistently exhibits superior 
performance, achieving the lowest MSE values across 
most train-test ratios. While ESDNN has marginally 
superior performance at the 8:2 ratio (0.0935 compared to 
FL-LSTM’s 0.1115), FL-LSTM exhibits enhanced 
accuracy in situations with constrained training data (1:2, 
2:2, and 4:2 ratios). This is especially beneficial for newly 
deployed cloud services where previous data may be 
limited.  

The test results clearly show that FL-LSTM is better at 
making predictions than other methods, no matter how far 
into the future or how much training data is used. 
Particularly noteworthy is FL-LSTM’s remarkable 
performance when operating with limited training data 
(train-test ratios of 1:2 or 2:2) on each client, where it 
consistently outperforms traditional statistical methods 
like ARIMA by significant margins and maintains an edge 
over sophisticated deep learning approaches such as 
HBNN, LSTMD, Transformer, and ESDNN. The 
approach simultaneously preserves data privacy by 
keeping sensitive CPU utilization metrics local to each 
client while delivering superior prediction accuracy. This 
advantage comes from two key benefits of  FL-LSTM: the 
FL mechanism effectively gathers and uses information 
from various clients, and the improved LSTM layer design 
accurately identifies time-related trends in CPU usage 
data. Through multiple iterations of local training and 
global aggregation, FL-LSTM enhances model robustness 
and reduces prediction errors, especially in tasks for 
predicting server load involving distributed virtual 
machines with diverse load patterns. This makes FL-
LSTM particularly valuable in realworld cloud 
environments where new virtual machines are 
continuously created with short operational periods, 
resulting in limited input data for prediction methods. In 
such scenarios, the system can combine initially weak 
models from individual VMs into a more accurate global 
model without compromising data sensitivity or prediction 
quality. 

Table IV presents the execution times for ARIMA, 
esDNN, HBNN, LSTMD, Transformer, and FL-LSTM. 
FL-LSTM forecasts the future value of the CPU in 0.12 
seconds, slightly above the execution times for HBNN and 
LSTMD, which are 0.09 and 0.10 seconds, respectively. 
Furthermore, esDNN requires an average of 0.50 seconds 
to predict a workload sample. ARIMA forecasts future 
values by averaging historical data and necessitates 6.94 
seconds, the longest execution time among the evaluated 
methods, to generate a prediction. Overall, FL-LSTM can 
accurately predict future CPU values while requiring an 
acceptable execution duration. 

Table IV.  The execution time (in seconds) of FL-
LSTM and other state-of-the-art methods. 

Method Execution time 
ARIMA 6.94 
esDNN 0.50 
HBNN 0.09 
LSTMD 0.10 

Transformer 0.13 
FL-LSTM 0.12 

 

FL-LSTM offers significant advantages beyond 
execution time. By eliminating the need to gather and 
process all training data at the server, it conserves both 
network resources and processing time. Traditional 
methods require encryption, decryption, and validation 
steps during the transfer of data from clients to servers, 
which FL-LSTM avoids. Moreover, in conventional 
approaches, the server’s capabilities often determine the 
overall scalability of the system. FL-LSTM mitigates this 
limitation by distributing the computational load across 
clients, potentially improving system scalability. 

F. Ablation studies 

This section examines the performance and behavior 
of various federated learning algorithms for time series 
forecasting under different operational conditions. We 
focus on evaluating algorithm convergence across 
multiple federation rounds and measuring performance 
resilience when faced with client disconnections, 
providing essential insights for real-world deployments. 

Figure 3 evaluates the FL algorithms through each 
iteration to determine the number of iterations that can 
objectively assess the results of experimental FL 
algorithms. Here, we use MSE as the loss indicator for 
early stopping, Figures 3(a) and 3(b) represent the MSE of 
each FL strategy in each round for the 2-step and 6-step 
ahead predictions. 

For the 2-step horizon prediction, most algorithms 
(FaultTolerantFedAvg, FedAvg, FedMedian, FedProx, 
and FedTrimmedAvg) show significant convergence by 
round 3, with their MSE values stabilizing around 0.0048-
0.0052. After this point, the fluctuations in MSE values 
become minimal (typically less than 5-10% change), 
indicating that the algorithms have reached a relatively 
stable state. The Krum algorithm demonstrates a similar 
pattern, stabilizing around round 5 with an MSE of 
approximately 0.0048. However, FedYogi exhibits 
exceptional instability throughout all rounds, with 
dramatic fluctuations in MSE values even after multiple 
iterations (ranging from 0.006772 to 0.055009 between 
rounds 6-7). 

The 6-step horizon prediction follows similar 
convergence patterns, with most algorithms stabilizing 
around round 3-4, albeit with generally higher MSE values 
due to the increased prediction difficulty. Based on these 
observations, we can conclude that approximately 5 
rounds of federation are sufficient for most algorithms to 
reach stable performance in this time series forecasting 
task, making it a reasonable threshold for comparative 
evaluation of different federated learning strategies.  

Table V presents the performance evaluation of the 
FL-LSTM algorithm under different client disconnection 
scenarios for both 10-minute and 30-minute prediction 
horizons. Here, each iteration has 𝑛 (Disconnect rate * 𝐾) 
clients that disconnect from the centralized server, and the 
accuracy of each client takes the value from the last round 
in which it was still able to connect to the server. For the  
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10-minute-ahead forecasting, we observe that the model 
maintains relatively stable performance with disconnect 
rates up to 37.5%, with MSE increasing gradually from 
0.00476 (no disconnections) to 0.00567. However, when 
the disconnect rate reaches 50%, the MSE significantly 
jumps to 0.00955, representing a 100.6% increase 
compared to the baseline, while MAE increases from 
0.0500 to 0.0778. Similarly, for the 30-minute-ahead 
predictions, the performance degradation follows a similar 
pattern but starts from a higher baseline error (MSE of 
0.00676 with no disconnections). As the disconnect rate 
increases, the MSE steadily rises to 0.01151 at 50% 
disconnection rate, representing a 70.3% increase in error. 

These results demonstrate that the FL-LSTM algorithm 
exhibits resilience to client disconnections up to 
approximately one-third of participants, beyond which 
prediction quality deteriorates substantially, particularly 
for shorter-term forecasts. 

V. CONCLUSIONS  

In this paper, we introduced FL-LSTM, a novel CPU 
utilization prediction method that combines Federated 
Learning (FL) and Long Short-Term Memory (LSTM) 
networks. FLLSTM offers inherent advantages by 
mitigating communication expenses and enhancing system 
scalability. Through comprehensive evaluation using 
Google cluster traces and Azure Public Dataset V1, we 
demonstrated that FL-LSTM outperforms most 
benchmarks in terms of both Mean Squared Error (MSE) 
and Mean Absolute Error (MAE). 

While FL-LSTM shows slight inferiority to the 
standard LSTM in some scenarios, its key strengths lie in 
preserving data privacy and maintaining scalability. This is 
achieved by storing training data locally and conducting the 
training process exclusively on the client side. 

Our future research directions include: 

- Investigating different workload data characteristics to 

further enhance the performance of FL-LSTM. 

- Exploring clustering techniques for VMs or clusters 

based on identified characteristics. 

- Extending FL-LSTM to predict multiple related 

workload metrics simultaneously (e.g., CPU usage, 

memory usage, network traffic) within a multi-task 

learning framework. 
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DỰ BÁO TẢI TRONG ĐIỆN TOÁN ĐÁM MÂY SỬ 

DỤNG HỌC LIÊN HỢP 

Tóm tắt: Dự đoán tải CPU là một bài toán đầy thách 

thức trong điện toán đám mây do bản chất biến động của 

việc sử dụng CPU. Hơn nữa, việc thu thập dữ liệu sử dụng 

CPU từ nhiều máy ảo để phát triển phương pháp dự đoán 

làm dấy lên những lo ngại về quyền riêng tư dữ liệu, chi 

phí truyền tải và khả năng mở rộng hệ thống. Để giải quyết 

những thách thức trên, nghiên cứu giới thiệu giải pháp FL-

LSTM, một kỹ thuật dự đoán tải kết hợp mạng Long short-

term memory (LSTM) với học liên hợp (Federated 

Learning). Trong phương pháp FL-LSTM, mỗi máy khách 

sử dụng LSTM cùng với dữ liệu tải CPU cục bộ của nó để 

tạo ra mô hình cục bộ. Các mô hình cục bộ này sau đó được 

tổng hợp để hình thành một mô hình toàn cục sử dụng thuật 

toán Trung bình hóa Liên kết (FedAvg) tiêu chuẩn. Chúng 

tôi đã tiến hành đánh giá toàn diện về FL-LSTM sử dụng 

dữ liệu tải của tám cụm  Google và tám cụm của Bộ dữ 

liệu Azure. Kết quả của chúng tôi chứng minh rằng 

FedAvg vượt trội hơn các chiến lược FL thay thế, trong 

khi FL-LSTM có độ chính xác đạt hoặc vượt qua của các 

phương pháp tiên tiến khác trong dự đoán tải trọng đám 

mây. Đáng chú ý, FL-LSTM đạt được MAE là 0,00438, 

cho thấy sự cải thiện về độ chính xác lần lượt là 74,7% và 

9,4% ứng với với ARIMA và HBNN. Những phát hiện này 

nhấn mạnh tiềm năng của FL-LSTM như một giải pháp 

hiệu quả để dự đoán nhu cầu CPU trong môi trường điện 

toán đám mây. 

Từ khóa: Dự đoán tải CPU, Điện toán đám mây, Học 

Liên hợp, LSTM 
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