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Abstract:  This paper presents a hand gesture 

recognition system for interactive augmented reality 
games, utilizing skeletal and image data to improve 
accuracy. We collected a comprehensive dataset of hand 
gestures comprising RGB images and skeletal 
coordinates for five distinct gestures. A Late Fusion 
model, which combines skeletal data with RGB image 
information, was proposed and achieved a test accuracy 
of 88.20%. This model was successfully integrated into a 
Unity 3D game, allowing players to control in-game 
actions through intuitive hand gestures. Experimental 
results demonstrate the effec tiveness of the proposed 
approach in enhancing user interaction and delivering a 
highly responsive gaming experience in AR 
environments. 

Keywords: Hand Gesture Recognition, Human 
Computer Interaction, Augmented Reality, Data Fusion, 
Transfer Learning, Deep Learning.  

I.  INTRODUCTION 

In the digital era, gesture recognition technology has 
become a powerful and intuitive medium for human 
computer interaction, particularly in interactive games. 
As a natural form of human communication, Gestures 
convey a wide range of meanings and emotions, mak ing 
them a rich channel for immersive user experiences. 
Using hand gestures for interaction in gaming offers an 
engaging and unique experience for players and 
contributes to the enhancement of motor skills and 
cognitive abilities. 

Augmented Reality (AR) provides a compelling 
platform where gesture recognition can be effectively 
applied, transforming user interaction by allowing players 
to manipulate virtual objects in a natural and immersive 
environment seamlessly. 

In this study, we focus on applying hand gesture 
recognition to AR action games, which particularly 
involve a variety of gestures, ranging from simple and 
distinct to complex and very similar. AR action games 
overlay virtual elements onto the real world, allowing 
players to interact with digital objects in their physical 
environment. Hand gesture recognition in this context 
can significantly enhance player immersion and control, 
enabling more intuitive interactions such as aiming, 

shooting, and manipulating virtual items without the need 
for physical controllers. However, developing reliable 
and accurate gesture recognition systems for AR poses 
significant challenges due to factors such as gesture 
variability, lighting conditions, and system latency.  

To address these challenges, we have collected a 
comprehensive dataset of RGB images and skeletal hand 
frames for various hand gestures. Building on this 
dataset, we conducted extensive experiments to develop a 
gesture recognition model. Based on a late fusion of 
skeletal and RGB data using deep learning architectures, 
the resulting model has been integrated into an interactive 
AR-based game developed using Unity 3D, allowing 
players to control in-game objects using natural hand 
gestures.  

In this paper, we make the following contributions: 

1) We introduce a novel dataset comprising RGB 
images and skeletal coordinates for five distinct hand 
gestures.  

2) We conduct and present a comprehensive study on 
different classification methods to highlight their 
characteristics.  

3) We propose a late fusion gesture recognition model 
that combines skeleton and RGB data.  

4) We demonstrate possible methods to integrate the 
model into a game engine, specifically the Unity engine. 

II. RELATED WORKS 

Hand gesture recognition (HGR) has emerged as a 
pivotal technology in enhancing user interaction within 
AR systems. The integration of HGR into AR facilitates a 
more immersive experience and allows for intuitive 
control mechanisms that align closely with natural human 
communication methods. The foundation of effective 
HGR lies in its ability to interpret human gestures as 
commands within a digital environment. As noted by 
Yousefi and Li, the analysis of 3D hand gestures is 
crucial for developing a robust human device interaction 
system, particularly in AR applications where gestures 
can serve as natural inputs for controlling virtual 
elements [1]. For instance, the family of grab gestures has 
been identified as particularly effective in 3D scenarios, 
providing a basis for user interactions that feel intuitive 
and seamless [1]. This is echoed by Piumsomboon et al., 
who highlight the importance of user-defined gestures in 
AR, allowing players to interact with virtual content in a 
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manner that feels both natural and engaging [2]. Deep 
learning methodologies have significantly advanced the 
capabilities of HGR systems. Recent studies, such as 
those by Li et al., demonstrate the effectiveness of neural 
networks in recognizing dynamic gestures, which are 
essential for interactive gaming environments [3]. The 
Attentive 3DGhost Module proposed by Li et al. 
enhances gesture recognition by leveraging positive 
knowledge transfer, thereby improving the accuracy and 
responsiveness of gesture-based interactions [3]. This 
technological advancement is crucial for AR games, 
where real-time feedback is essential for maintaining user 
engagement and immersion. Moreover, the application of 
HGR in AR games extends beyond mere gesture 
recognition; it encompasses creating an interactive 
experience that blends physical and virtual worlds. For 
instance, the work by Xu emphasizes the market potential 
for HGR technologies, projecting significant growth as 
these systems become integral to user interfaces in AR 
and VR environments [4]. This growth is supported by 
the increasing demand for intuitive control systems that 
do not rely on traditional input devices, enhancing the 
overall user experience. The role of hand gestures in 
ARis further underscored by the findings of Sch¨afer et 
al., who discuss the importance of arbitrary one-handed 
gestures in AR applications [5]. This flexibility allows 
users to engage with virtual environments without the 
constraints of physical controllers, thereby fostering a 
more immersive experience. The ability to perform 
gestures freely in a 3D space aligns with users’ natural 
movements, making interactions feel more organic and 
less mechanical. In addition to enhancing user 
experience, HGR also plays a critical role in accessibility. 
For individuals with disabilities, gesture-based interfaces 
can provide alternative means of interaction without 
traditional input methods. Research by Kang et al. 
highlights the potential of sEMG-based recognition 
systems, which can interpret gestures through muscle 
signals, thus offering new avenues for interaction in AR 
environments [6]. This capability is particularly relevant 
in gaming, where inclusivity can significantly broaden 
the audience and enhance engagement. Furthermore, 
integrating HGR in AR games can lead to innovative 
gameplay mechanics that leverage the unique capabilities 
of gesture recognition. For example, the use of advanced 
models like Vision Transformer (ViT) for static hand 
gesture recognition can enhance the expressiveness of 
player interactions, allowing for more complex and 
nuanced gameplay experiences[7]. By accurately 
interpreting a wider range of gestures in realtime, players 
can engage with the game environment in more dynamic 
and immersive ways, ultimately enriching their overall 
gaming experience. This is particularly relevant in 
multiplayer settings, where gestures can serve as non-
verbal communication tools, enriching the social 
dynamics of gameplay. However, the challenges 
associated with HGR in AR cannot be overlooked. Issues 
such as occlusion, varying lighting conditions, and the 
need for real-time processing pose significant hurdles. As 
noted by Zhao, traditional camera systems often struggle 
with depth perception and field of view limitations, 
which can hinder gesture recognition accu racy [8]. 
Addressing these challenges requires ongoing research 
and development, particularly in the areas of computer 
vision and machine learning.  

Image-based methods use processing techniques to 
extract features from hand gestures captured in images or 
videos. While they do not require specialized equipment, 
they are highly susceptible to noise and image resolution 
issues. Notable works in this area include [9], [10], and 
[11], which explore various image processing algorithms 
for gesture recognition. 

Skeleton-Based methods leverage sensors like Leap 
Motion or Kinect to capture the position and orientation 
of finger joints. They offer higher accuracy and stability 
but require expensive and complex hardware. Studies 
such as [12], [13], and [14] have demonstrated the 
effectiveness of skeleton-based approaches in gesture 
recognition. 

In conclusion, integrating HGR into AR systems 
significantly advances human-computer interaction. By 
leveraging natural gestures, developers can create 
immersive experiences that resonate with users on a 
deeper level. As technology continues to evolve, the 
potential for HGR in AR will likely expand, paving the 
way for more intuitive, engaging, and accessible 
experiences. Future research should focus on enhancing 
the robustness of gesture recognition systems, exploring 
new interaction paradigms, and ensuring that these 
technologies are inclusive and user-friendly. 

III. METHODOLOGY 

In this section, we outline the comprehensive approach 
adopted to achieve the objectives of our study. The 
methodology is designed to ensure the reliability and 
validity of the results, encompassing various stages from 
initial planning to final analysis. 

To develop a robust gesture recognition model, we 
collected a comprehensive dataset comprising hand 
gesture images and skeletal data. The gestures were 
selected with two key considerations in mind: first, the 
initial three gestures are easily distinguishable, serving to 
confirm the effectiveness of the model; second, the last 
two gestures are very similar to each other, mimicking 
scenarios where gestures are not always distinct. These 
considerations ensure their relevance and applicability in 
interactive game scenarios. 

 

 Figure 1. Examples of hand gestures used in the dataset 
for gesture recognition model development, 

demonstrating both distinct (Idle, Use item, Pickup item) 
and similar (Aim, Shoot) gestures. 

The game scenario we choose involves a shooting, 
level-based mechanism where players navigate through 
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various zones, collecting items and engaging with 
enemies. The gestures include: Pickup Item, Use Item, 
Aim, Shoot, and Idle. These gestures are described in 
Figure 1. 

A. Features 

First, a camera is placed in front of the user, capturing 
an RGB image stream of the person performing the 
gesture. Then, MediaPipe [15] is used to extract skeleton 
data and the bounding box of the hands. From the 
bounding box, we can further crop the image to get only 
images of the hands. After these steps, we end up with 
three types of data: raw images, cropped images, and 
skeleton data. 

• Raw images: These are the original images captured 
by the camera, containing the entire scene, including the 
person and their surroundings.  

• Cropped images: These images are cropped to 
include only the hands, based on the bounding box 
provided by MediaPipe. 

 • Skeleton data: This consists of the landmarks 
information of both hands extracted by MediaPipe, which 
includes the positions of key points on the hands. 

B. Hand Gesture Recognition Model 

We propose a Late Fusion model comprising a 
Convolutional Neural Network (CNN) for skeletal data 
feature extraction and a transfer learning network with a 

MobileNetV2 base pre-trained on ImageNet for image 
data extraction, as illustrated in Figure 2. 

We chose the Late Fusion model for several key 
reasons. First, this approach effectively combines the 
strengths of both skeletal data and RGB image data, 
significantly enhancing gesture recognition accuracy. By 
leveraging the unique characteristics of each data type, 
the model achieves a more comprehensive understanding 
of gestures. 

Moreover, the Late Fusion model is particularly adept 
at handling variability, which is a common challenge in 
AR environments. The integration of skeletal and image 
data allows the model to adapt to variations in gesture 
execution and lighting conditions, thereby improving its 
robustness in real-world scenarios. 

Furthermore, the fusion approach enables the model to 

capture high-level features from images while 

simultaneously analyzing detailed hand movements from 

skeletal data. This dual capability leads to more accurate 

and reliable gesture recognition outcomes. 

To prepare the skeletal data for processing, it was 

normalized to ensure consistency, with the thumb 

positioned on the left and the pinky on the right. The 

angles between finger joints were calculated using the 

atan2 function, resulting in 15 distinct features that serve 

as input for the model.

 

 

 Figure 2. Proposed architecture for late fusion hand gesture recognition. 

The CNN architecture consists of several layers 
designed to process the skeletal data. Initially, the input 
data is passed through a series of convolutional layers. 
The first convolutional layer has 64 filters with a kernel 
size of 3, followed by a max-pooling layer with a kernel 
size of 2. This is succeeded by a second convolutional 
layer with 128 filters and the same kernel size, followed 
by another max-pooling layer. The output from the 
convolutional layers is then reshaped and fed into an 
LSTM layer with 100 hidden units. Finally, the LSTM 
output is passed through two fully connected layers, with 

the first layer having 50 units and the second layer 
producing the final output corresponding to the number 
of gesture classes. 

The transfer learning network utilizes a MobileNetV2 
architecture, which is pre-trained on the ImageNet 
dataset. This network is employed to extract high-level 
features from the image data. The pretrained 
MobileNetV2 model is fine-tuned on our HGR dataset to 
adapt it to the specific task of gesture classification. The 
extracted features from both the DNN and the transfer 
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learning network are then fused at a later stage to make 
the final prediction. 

C. Game Intergration 

The HGR model can be integrated into a Unity 3D 
game in two different ways, allowing players to control 
in-game actions using their gestures. The model 
processes the gestures in real-time, transmitting the 
recognized commands to the game via the User Datagram 
Protocol (UDP). This setup ensures minimal latency and 
a responsive gaming experience. 

The first integration method involves using a separate 
Python script that performs inference in the background. 
This script processes the gesture data and sends the 
recognized commands to the game through localhost 
using UDP. This approach allows for efficient 
communication between the HGR model and the game, 
ensuring that the player’s gestures are accurately 
reflected in real-time within the game environment. 

The second integration method involves exporting the 
HGR model to the Open Neural Network Exchange 
(ONNX) format and performing inference using Unity’s 
Barracuda library. This approach allows the model to be 
directly embedded within the Unity game, leveraging 
Barracuda for efficient on-device inference. This method 
reduces the dependency on external scripts and can 
potentially improve the overall performance and 
responsiveness of the game. 

In our experimental game scenario, we also 
implemented head movement detection for character 
navigation. This was achieved using the Haar cascades 
classifier, which detects the user’s head movements and 
translates them into navigation commands. The 
character’s pathfinding was managed using the A* 
algorithm, ensuring efficient and accurate movement 
within the game environment. 

IV.  EXPERIMENT 

A. Data Collection 

Data was collected on 14 participants using a custom-
built data acquisition tool and a set of sample gesture 
images. Participants were instructed to perform each 
gesture in front of a camera. Each participant contributed 
approximately 1,200 images per gesture. After filtering 
out low-quality images and duplicates, we obtained a 
total of 62,680 images and corresponding skeletal data1. 

The collected data was automatically labeled and 
organized into separate folders for each gesture. The 
dataset was then divided into training, validation, and 
testing sets by participants to ensure a balanced and 
comprehensive model evaluation. Specifically, data from 
8 participants was used for training, data from 2 
participants for validation, and data from 4 participants 
for testing. 

Table I. data distribution across training, validation, and test 

sets. 

 Number of Participants Data Points 

Train 

Validation 

8 

2 

35716 

10990 

 
1 Code and dataset https://github.com/dtungpka/HGR-AR 

Test 4 15974 

B. Ethical Considerations 

All data collection and experiments were conducted in 
accordance with institutional ethical guidelines. 
Participant consent was obtained prior to collecting hand 
gesture data by signing a consent form, which explained 
the purpose of the study, the procedures involved, and the 
measures taken to ensure confidentiality. We ensured 
personal identifying information was anonymized, with 
each participant assigned a unique 4-digit number for 
identification in the dataset. 

C. Implementation Details and Hyperparameter Tuning 

The model was implemented using the PyTorch 
framework, which offers the flexibility and efficiency 
necessary for our deep learning tasks. To optimize the 
performance of our handgesture recognition system, we 
conducted a series of experiments with various 
architectures and hyperparameters. 

Hyperparameter tuning was a crucial aspect of our 
model optimization process. We systematically explored 
different configurations to identify the best values for key 
hyperparameters. The final selected hyperparameters for 
our model are as follows:  

• Learning Rate: 1×10−2 (initial learning rate)  

• Batch Size: 64  

• Total Epochs: 10  

Additionally, we implemented a learning rate 
scheduler to gradually reduce the learning rate to 10% of 
the original rate every 3 epochs. This strategy was 
essential in ensuring stable training and improved 
convergence of the model, which is proven effective by 
Smith et al. in Cyclical Learning Rates for Training 
Neural Networks [16], who demonstrated that using a 
learning rate scheduler can significantly enhance the 
training process and improvemodel performance in 
neural networks. 

D. Models Evaluation 

We conducted experiments on both image-based and 
skeleton-based models to obtain comprehensive results.  
As described in Section III, our proposed model 
comprises a CNN for skeletal data and a transfer learning 
network for image data. 

For the skeletal data, we experimented with two 
different scenarios: using only normalized landmark 
positions and using calculated angles between adjacent 
joints. For the image data, we tested different 
basemodels, including ResNet50, MobileNetV2, and 
DenseNet121, using both raw images and cropped 
images to include only the hands. 

E. Evaluation Metrics 

We evaluated the modelp erformance using accuracy, 
precision, recall, and F1 score metrics. These metrics 
provide a comprehensive assessment of the model’s 
ability to correctly recognize gestures. Additionally, the 
game performance was assessed, focusing on the 
responsiveness, delay, and accuracy of gesture-based 
controls. This evaluation ensures that themodel not only 
performs well in a controlled environment but also 
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provide sasatisfactory user experience in real-time 
applications. 

V. RESULTS 

In this section, we present the results of our 

experiments. 
A. Skeleton Model 

We evaluated the performance of the skeleton-based 

models using two different feature sets: landmark 

positions and calculated angles between adjacent joints. 

The results are summarized in Table II.  

Table II. data comparison of key performance metrics 

between the two models. 

Metric Landmark 

Model 

Joint Angle 

Model 

Test Accuracy (%) 

Precision 

Recall 

F1-Score 

78.50 

0.78 

0.78 

0.78 

80.54 

0.81 

0.81 

0.80 

Both models demonstrate satisfactory performance  for 
most gesture classes. However, when comparing the two, 
we observe that the joint angle-based model consistently 
achieves better results, especially for the more 
challenging gestures in Class 4 and Class 5. These  
classes had poor recall in the landmark position-based 
model, indicating a higher rate of false negatives. The 
joint angle approach helps mitigate this issue by 
providing a more informative representation of hand  
pose. 

1) Results Using Landmark Positions: The model 
using landmark positions achieved average test accuracy 
of 78.50%. The average precision, recall, and F1 score 
were all 0.78. The detailed class-wise performance is 
shown in Table III. 

Table III. performance of the model using landmark positions. 

Class Precision Recall F1-Score 

1 

2 

3 

4 

5 

0.99 

0.90 

0.94 

0.60 

0.51 

0.98 

0.97 

0.87 

0.77 

0.32 

0.99 

0.93 

0.91 

0.67 

0.39 

The model already demonstrates strong performance  

for most gesture classes, especially Class1 and Class2, 

which achieve near-perfect precision and recall scores. 

2) Results Using Calculated Angles: The second 
model,  trained using calculated joint angles, slightly 
outperforms the first model, with an average test 
accuracy of 80.54% and a reduced test loss of 0.0343.  
The model achieves an overall precision of 0.81, recall of 
0.81, and F1-score of 0.80. Table IV provides the detailed 
class-wise performance metrics. 

This model improves classification for the poorly 
performing classes in the previous model. For Class 4, 
the F1-score remains modest at 0.64, but this represents a 
notable improvement over the previous model. Similarly, 

Class5 improves to an F1-score of 0.60, significantly 
higher than the performance using landmark positions. 

Table IV. performance of the model using joint angles. 

Class Precision Recall F1-Score 

1 

2 

3 

4 

5 

0.97 

0.89 

0.96 

0.65 

0.60 

0.99 

0.97 

0.87 

0.64 

0.60 

0.98 

0.93 

0.91 

0.64 

0.60 

B. Image Model 

On the other hand, using RGB data for HGR produced 
varying results across different models. Table V 
summarizes the performance metrics for all image-based 
models. 

Table V. performance of image models on hgr 

Model Accuracy (%) 

ResNet50 (Raw) 

MobileNetV2 (Raw) 

DenseNet121 (Raw) 

ResNet50 (Cropped) 

MobileNetV2 (Cropped) 

DenseNet121 (Cropped) 

61.78 

75.02 

74.54 

76.80 

85.48 

80.82 

The highest accuracy was achieved by using 
MobileNetV2 as a base model on cropped images, with a 
test accuracy of 85.48%, precision, and F1 score of 0.85. 
Cropping the images to focus solely on the hand region 
proved to be a critical factor in improving the model’s 
performance across the board. In contrast, models trained 
on raw images demonstrated significantly lower accuracy 
and precision, with ResNet50 (raw) performing the worst, 
achieving only 61.78% accuracy and an F1score of 0.58. 

1) Model Comparison and Analysis: Among the 
cropped image-based models, MobileNetV2 stands out as 
the best performer. Its architecture, which balances the 
depth and width of the network, appears to be well-suited 
to the HGR task, especially when combined with image 
cropping. DenseNet121 also performed well on cropped 
images, yielding an accuracy of 80.82%, but fell short 
compared to MobileNetV2. 

The ResNet50 model, while showing significant 
improvement on cropped images (76.80%), performed 
notably worse than the other models, indicating that 
deeper networks may not necessarily perform better for 
this task. 

2) Comparison with Skeleton Model: When comparing 
the image-based models to the skeleton model (Section 
5.1), the best image-based models (MobileNetV2 and 
DenseNet121) out performed the skeleton models in 
terms of accuracy and precision. The skeleton model’s 
highest accuracy was 80.54%, achieved with joint angle 
data. In contrast, MobileNetV2 achieved 85.48%, 
indicating that the image data, particularly when cropped, 
captures essential gesture information more effectively. 
However, for the more challenging gestures (Class 4 and 
Class 5), the skeleton model showed relatively better 
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performance in recall,  reducing false negatives, 
especially when using joint angle representations. 

C. Proposed Late Fusion Model 

Table VI. performance comparison of rgb-based, skeleton 

based, and late fusion models on hgr 

Model Accuracy 

(%) 

ResNet50 (Raw) 

MobileNetV2 (Raw) 

DenseNet121 (Raw) 

ResNet50 (Cropped) 

MobileNetV2 (Cropped) 

DenseNet121 (Cropped) 

Skeleton (Landmark) 

Skeleton (Joint Angle) 

Late Fusion (Our proposed method) 

61.78 

75.02 

74.54 

76.80 

85.48 

80.82 

78.50 

80.54 

88.20 

As shown in Table VI, the Late Fusion model achieved 

a test accuracy of 88.20% with a test loss of 0.0339, 

indicating a strong generalization capacity on the test set. 

The model’s precision, recall, and F1 score were 

balanced across all classes, with values of 0.87, 0.88, and 

0.88, respectively. These metrics demonstrate that the 

fusion approach mitigates the shortcomings observed in 

the separate models. 

Table VII. precision, recall, and f1-scores for the late fusion 

model across all gesture classes. 

Class Precision Recall F1-Score 

1 

2 

3 

4 

5 

0.76 

0.98 

0.88 

0.83 

0.92 

0.71 

0.98 

0.97 

0.77 

0.98 

0.74 

0.98 

0.92 

0.80 

0.95 

For example, the image-only model achieved a test 

accuracy of 85.48%, while the skeleton-only model 

reported a maximum accuracy of 80.54% (refer to 

Skeleton Model section). This shows that combining both 

data types improves recognition accuracy, particularly in 

gestures where image or skeleton data alone are 

insufficient. 

When compared to the skeleton-only model, the Late 
Fusion model shows a marked improvement across all 
classes, especially for similar gestures like Class 4 (Aim) 
and Class 5 (Shoot). The skeleton model struggled with 
these classes, achieving F1-scores of 0.67 and 0.60, 
respectively, indicating a higher rate of false negatives. 
The fusion approach significantly reduced this error rate 
by incorporating contextual information from RGB 
images. 

Similarly, the image-only model performed well on 
simple gestures but failed to capture the finer details of 
hand positioning required for more complex gestures like 
Class 4. The image-only model’s F1-score for Class 4 
was 0.64, compared to 0.80 achieved by the fusion 
model. This demonstrates that the addition of skeletal 
data helps to capture nuances in hand orientation and 

joint angles, which are critical for recognizing subtle 
movements. 

D. Game Integration Performance 

In this section, we presents the performance metrics 
related to game integration for the models utilized in our 
study.  

1) Using UDP to Send Inference Results: One 
advantage of utilizing the UDP protocol for transmitting 
inference results is that the model is run on PyTorch, 
which efficiently handles complex model architectures. 
The average inference times for the various models are 
summarized in Table VIII. 

Table VIII. average inference times 

Model Average Inference Time (ms) 

ResNet 

MobileNetV2 

DenseNet121 

29.5 

14.5 

33.6 

However, a downside to this method is the additional 
time required for sending data to the Unity game using 
UDP, which averages around 7-10 ms. When combined 
with the average 38 ms taken to process skeleton data 
using MediaPipe, the total processing time amounts to 
approximately 76 to 79 ms per frame. 

2) ONNX: The ONNX model can be run directly in 
Unity using Barracuda, which makes it more compact 
and easier to deploy. Despite these advantages, the 
ONNX model consistently takes between 60.734 ms and 
73.131 ms to produce results for each frame. 
Furthermore, preprocessing skeleton data using 
MediaPipe plugin adds an additional 45-50 ms. 
Consequently, the total time for the ONNX model, 
including preprocessing, ranges from approximately 105 
ms to 123 ms per frame. 

E. Limitations  

Although our proposed hand gesture recognition 
model demonstrates promising results, several limitations 
should be noted:  

• The dataset size was relatively small, comprising 
only from 14 participants, which may affect the model’s 
generalizability. 

• Our testing was limited regarding subjects with hand 
mobility issues, which may restrict the applicability of 
our model for all users.  

• Additionally, the computational requirements of our 
model may limit its real-time applications on resource-
constrained devices, potentially hindering broader 
implementation. 

To enhance the robustness and applicability of our 
system, future work should focus on addressing these 
limitations through larger-scale data collection and 
optimization strategies tailored for edge devices. 

VI.  CONCLUSIONS 

In this study, we explored the application of gesture 
recognition technology in an interactive AR game. We 
developed a dataset comprising both hand gesture images 
and skeletal data and trained a deep learning model to 
recognize five distinct gestures. Our proposed Late 
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Fusion model, which combines skeletal and image data, 
achieved a test accuracy of 88.20%, demonstrating its 
effectiveness in recognizing complex gestures. By 
integrating this model into a Unity 3D game, we 
highlighted the potential of gesture recognition to 
enhance interactive gaming experiences. Future work will 
focus on improving model accuracy and expanding the 
set of recognized gestures to enrich user interactions 
further. 
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NHẬN DẠNG CỬ CHỈ TAY CHO TƯƠNG TÁC 

NGƯỜI DÙNG TRONG TRÒ CHƠI THỰC TẾ 

TĂNG CƯỜNG 

Tóm tắt: Bài báo này giới thiệu hệ thống nhận dạng cử 
chỉ tay dành cho trò chơi thực tế tăng cường có tính 
tương tác, tận dụng dữ liệu xương và hình ảnh để cải 
thiện độ chính xác. Một tập dữ liệu cử chỉ tay được thu 
thập bao gồm hình ảnh RGB và tọa độ khung xương cho 
năm cử chỉ khác nhau. Mô hình Late Fusion, kết hợp dữ 
liệu xương với thông tin hình ảnh RGB, đã được đề xuất 
và đạt độ chính xác kiểm thử 88,20%. Mô hình này đã 
được tích hợp thành công vào trò chơi Unity 3D, cho 
phép người chơi điều khiển các hành động trong trò chơi 
thông qua các cử chỉ tay trực quan. Kết quả thực nghiệm 
cho thấy hiệu quả của phương pháp đề xuất trong việc 
tăng cường tương tác người dùng và mang lại trải nghiệm 
trò chơi có độ phản hồi cao trong môi trường thực tế tăng 
cường.  

Từ khóa: Nhận dạng cử chỉ tay, Tương tác Người-

Máy, Thực tế tăng cường, Kết hợp dữ liệu, Học chuyển 

giao, Học sâu.  
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