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Abstract: Backhaul and access communication 

networks are heavily reliant on effective optical network 

management to prevent service interruptions and ensure 

Quality of Service (QoS) compliance. New types of 

failures in optical networks present challenges that could 

expose the network to various risks. Traditional detection 

techniques are increasingly inadequate in addressing these 

issues. In contrast, Deep Learning (DL) has emerged as a 

promising approach for fault identification and prevention. 

This study introduces several key contributions that 

distinguish it from conventional fault management 

systems. The first contribution is the development of a 

Long Short-Term Memory (LSTM) model, integrated with 

the Mutual Information (MI) technique, to assess their 

combined effectiveness in detecting normal optical fibers 

and seven distinct fault types, including fiber cutting, fiber 

eavesdropping (fiber tapping), dirty connectors, bad 

splices, bending, reflectors, and PC connectors, achieving 

an accuracy rate of up to 93.23%. Finally, the proposed 

model is benchmarked against other deep learning models, 

such as BiLSTM, CNN, DNN, and RNN, to evaluate 

critical performance metrics of the AI model. 

Keywords: fiber faults detection, deep learning model, 

LSTM, MI. 

I. INTRODUCTION 

In contemporary society, there has been a substantial 

increase in the demand for widespread access to high-speed 

information across various platforms, encompassing both 

fixed and wireless services [1],[2]. As a result, optical fiber 

technology has gained popularity as a vital component of 

information infrastructure [3]. To meet the demands of 

rapid data transmission in wireless networks such as 4G, 

5G, and beyond [4],[5], optical fiber-based information 

systems have been widely adopted. 

Optical fiber serves as the primary medium for 

transmitting vast amounts of data across the Internet, 

mobile backhaul, and core networks. A single fiber link can 

support thousands of customers and businesses, carrying a 

mix of personal, corporate, and public information. 

Consequently, any disruption to the fiber can have 

significant repercussions, necessitating immediate action. 

Optical fibers are susceptible to several issues, including 

physical damage like fiber cuts and security breaches such 

as eavesdropping, both of which can impact network 

availability and data confidentiality. Identifying and 

diagnosing these problems manually requires specialized 

knowledge and time. Optical Time Domain Reflectometer 

(OTDR) is widely used for monitoring fibers, as it can 

measure characteristics and detect faults. However, due to 

noise interference, analyzing OTDR data can be complex 

and time-consuming with conventional methods. 

Therefore, an automated system that can accurately and 

swiftly identify fiber issues would help reduce operational 

costs and ensure timely restoration of services. 

Furthermore, nowadays, Artificial Intelligence (AI) has 

made significant contributions to the prediction of 

anomalies in a number of fields, including e-commerce, 

healthcare, IoT, vehicular networks (VANETs), and power 

monitoring systems, among others. In optical 

communication systems, current research has widely 

applied machine learning (ML) and deep learning (DL) 

techniques, such as linear regression (LR) methods used 

for signal amplification [6]. In particular, machine learning 

approaches have been developed for flaw detection. For 

example, to anticipate the location of a fiber cut in an 

underground cable, the Single-Layer Perceptron Neural 

Network (SLP NN) approach was developed based on the 

fundamental LR technique [7]. Fiber optics also 

incorporates other methods, such as Autoencoder (AE) and 

Bidirectional Gated Recurrent Unit (BiGRU) algorithms, 

for anomaly detection [8]. 

In the quest for more accurate fault detection and 

localization in optical fiber networks, various advanced 

machine learning techniques have been explored. Among 

these, Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks have been 

proposed as methods to identify and localize reflecting 

fiber events caused by mechanical splices and connections 

[9-11]. The BiLSTM-CNN is a hybrid machine learning 

(ML) architecture that combines CNNs with a 

Bidirectional Long Short-Term Memory (BiLSTM) 

network to identify, localize, and distinguish between 

reflective, non-reflective, and merged events [12]. 

However, the aforementioned works utilized limited 

ML/DL techniques for fault detection, with a narrow range 

of fault types and complex models that combined two 

algorithms. Moreover, these models required lengthy 

training times, partly due to processing all the features of 

the OTDR data. In contrast, this research proposes and 
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evaluates the detection of eight major faults using an 

LSTM classification model combined with the Mutual 

Information (MI) feature selection technique, referred to as 

MI-LSTM. Additionally, this paper compares the 

performance of the proposed model with other deep 

learning (DL) models, including BiLSTM, CNN, DNN, 

and RNN. 

II. PROPOSED MODEL 

The four main stages of the fiber monitoring model are 

fiber monitoring and monitoring from the optical fiber 

network; data processing; anomaly detection and fault 

diagnosis; and fiber problem mitigation and recovery, as 

shown in Fig.1. The Optical Time Domain Reflectometer 

(OTDR) plays a pivotal role in regularly examining optical 

fibers within the network. By leveraging light 

backscattering, the OTDR assesses parameters such as 

attenuation, fault locations, and connection integrity. Data 

is collected by transmitting light pulses through the fibers 

and capturing reflected signals from disruptions like cuts, 

bends, or poor connections. The process involves 

replicating real-world conditions, gathering signals, 

labeling them according to fault types or normal operation, 

and applying noise reduction techniques. The resulting 

OTDR traces, or monitoring data, are sent to the software-

defined networking (SDN) controller managing the optical 

network. This data is segmented into fixed lengths and 

normalized before being fed into a deep learning model for 

identifying fiber anomalies or diagnosing defects. Once a 

fault is detected, predefined recovery protocols are 

triggered, and the SDN controller informs the network 

operation center. The center then alerts the maintenance 

team and relevant customers about the detected issue. This 

paper emphasizes the stages of data processing, anomaly 

detection, and fault diagnosis using a deep learning-based 

approach. 

The main components of our proposed model include 

Minmax scaler normalization method, Mutual Information 

feature selection technique and LSTM model, illustrated in 

Fig. 2. In this research, selecting key features, by Mutual 

Information technique, from the OTDR dataset plays a 

crucial role in our research. This approach helps identify 

factors that significantly influence prediction outcomes 

while avoiding the use of unnecessary features, which can 

waste training time and even lead to inaccurate results. 

Additionally, we focus on developing a deep learning, 

LSTM model, based on OTDR monitoring data from 

optical networks to analyze fiber faults such as fiber cuts 

and optical eavesdropping attacks, which are considered 

major incidents. Since these fault patterns and other 

anomalies like bad splices, dirty connectors, bending, and 

back reflection have similar characteristics, especially 

under very low signal-to-noise ratio (SNR) conditions, we 

have integrated them into the deep learning model's 

training phase for fault diagnosis, ensuring accurate fault 

identification and reducing false alarms. Furthermore, we 

also compare the LSTM model with other popular deep 

learning models such as BiLSTM, CNN, DNN, and RNN 

to assess the effectiveness of each method. 

A. Dataset and Data preprocessing 

The generated OTDR traces [13] have 8 labels (0-

normal, 1-fiber cutting, 2-fiber eavesdropping (fiber 

tapping), 3-dirty connector, 4-bad splice, 5-bending, 6-

reflector, 7-PC connector). They are segmented into 

sequences of length 30 together with SNR resulting in 31 

features. This approach ensures that each segment contains 

relevant information for anomaly detection, while the 

inclusion of the SNR feature helps assess the quality of the 

signal, improving the model's ability to detect faults 

accurately. The dataset is normalized using the MinMax 

scaler technique. MinMax scaler is a commonly used data 

normalization technique in machine learning, which 

transforms data values to the range [0, 1]. This technique 

maintains the relative scale between values, helping 

machine learning and deep learning algorithms perform 

 

Fig.1 Optical network monitoring model. 
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more effectively, especially those sensitive to value ranges 

such as neural networks. By normalizing data to the [0, 1] 

range, the impact of outliers is reduced, which enhances the 

accuracy of the models. 

B. Feature selection 

Once the data preprocessing is complete, the dataset is 

fed into a feature selection mechanism to identify and filter 

out the most crucial features. This feature selection process 

helps eliminate unnecessary attributes, reduce model 

complexity, and enhance the performance and accuracy of 

machine learning algorithms by focusing on the factors that 

most significantly impact prediction outcomes. 

The feature selection technique employed here is 

Mutual Information (MI) [14]. MI is a feature selection 

technique used to measure the degree of dependency 

between two variables. It assesses the amount of shared 

information between features and the target variable, 

helping to identify the most crucial features in a dataset. 

Unlike methods that rely on linear relationships, MI can 

detect nonlinear dependencies, making it effective for 

revealing significant features that may not be linearly 

related to the target variable. By filtering out less relevant 

features, MI reduces model complexity and improves 

performance, focusing on factors with the strongest 

influence on prediction outcomes. Additionally, MI does 

not require specific distribution assumptions, making it 

versatile and effective in various scenarios. 

C. LSTM-based optical fiber fault detection 

After selecting the important features or using all 

features from the dataset, the data is divided into two parts: 

80% is used for training, while the remaining 20% is 

reserved for testing the performance of the trained model. 

In this study, at first, the LSTM model [15] was 

constructed with four layers: one input layer, two hidden 

layers, and one output layer. The selection of 128 and 64 

nodes for the two hidden layers was based on a balance 

between computational efficiency and model performance 

[16]. Specifically, the initial layer with 128 nodes captures 

the complexity of the input features, while the subsequent 

layer with 64 nodes reduces dimensionality and prevents 

overfitting without significant loss of information. This 

architecture was determined through multiple trials and 

was found to provide optimal accuracy for the OTDR 

dataset. The dropout rate of 5% was selected after testing 

various values ranging from 2% to 20%. This rate 

effectively minimized overfitting while preserving the 

model's ability to learn from the data. The “ReLU” 

activation function was applied in the hidden layers to 

introduce non-linearity, enhancing the model's ability to 

learn complex patterns. The output layer, containing eight 

nodes corresponding to the eight fault classes, uses the 

“softmax” function for classification. To ensure efficient 

training, the model employs the “Adam” optimizer with a 

learning rate of 0.001, which is dynamically reduced by a 

factor of 0.2 if the validation error stagnates or worsens 

over three consecutive epochs. Early stopping is also 

utilized to avoid overfitting, ending training when no 

improvement is observed in validation error after a 

specified number of epochs. These architectural choices 

 

Fig.2. The proposed model and operation processes. 

 

 

Fig.3. Accuracy of MI-LSTM model dependence on the 

number of features is swept in the range from 1 to 31 

features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Confusion matrix of MI-LSTM model. 
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were thoroughly tested and demonstrated superior 

performance across key evaluation metrics. 

The hyperparameter optimization process involves 

using the Marine Predators Algorithm (MPA) [17] in 

conjunction with 5-fold Cross-Validation (CV5) [18]. 

MPA, inspired by the hunting strategies of marine 

predators, systematically explores the hyperparameter 

space to identify the optimal values for key parameters, 

such as the learning rate, dropout rate, and layer sizes. This 

approach ensures that the model achieves a balance 

between performance and complexity. Additionally, CV5 

divides the dataset into five subsets, using four subsets for 

training and one for testing in each iteration. This process 

evaluates the model’s performance across multiple 

configurations and prevents overfitting by ensuring the 

selected hyperparameters generalize well to unseen data. 

These methods together ensure that the optimized model 

is robust and performs reliably across various scenarios. 

Finally, the proposed model is evaluated using the test 

dataset, with accuracy, recall, and F1-score serving as 

performance metrics, which are calculated as follows: 

Accuracy
TP TN

TP FP TN FN

+
=

+ + +
 

Recall 
TP

TP FN
=

+
 

F1-score

( )
1

2

TP

TP FP FN

=

+ +

 

 

where TP, TN, FN, and FP stand for true positive, true 

negative, false negative, and false positive in confusion 

matrix, respectively. 

Similarly, we conducted experiments on four models 

(BiLSTM, CNN, DNN, and RNN) to compare them with 

the proposed LSTM model. 

III. RESULTS AND DISCUSSION 

Initially, we employ the Mutual Information (MI) 

feature selection technique in conjunction with the LSTM 

model to reduce the dimensionality of the dataset, selecting 

a smaller, practical set of features. This approach improves 

processing speed without significantly compromising fault 

detection accuracy. Figure 3 illustrates the relationship 

between the number of selected features and the accuracy 

of the MI-LSTM model. Notably, with only 20 features, 

the model achieves an accuracy of 90%. Furthermore, by 

using just 25 features, the proposed LSTM model reaches 

the same accuracy-approximately 97% on the training set 

and 94% on the test set-as when utilizing all 31 OTDR 

features. This demonstrates the model's efficiency in 

maintaining high accuracy while using fewer features, 

thereby reducing both computational load and training 

time. 

Next, the confusion matrix is utilized as a key method 

to evaluate the model’s performance. A high number of 

correct predictions (the cells along the main diagonal) 

indicates that the model is performing well, while the off-

diagonal cells represent the number of incorrect 

predictions. Fig. 4 presents the confusion matrix for the test 

dataset of the proposed MI-LSTM model with 25 features. 

This result demonstrates that the proposed model 

effectively classifies all 8 labels (0-normal, 1-fiber cutting, 

2-fiber eavesdropping (fiber tapping), 3-dirty connector, 4-

bad splice, 5-bending, 6-reflector, 7-PC connector), 

including those that are challenging to distinguish, such as 

bad splice and dirty splice. 

The training process, illustrated in Fig. 5, indicates that 

the model's performance is quite satisfactory. Both training 

and validation graphs reveal that the model is learning 

efficiently, with high accuracy and low loss after multiple 

epochs. The close alignment of accuracy and loss metrics 

between the training and test sets further suggests that the 

model exhibits strong generalization ability and is not 

overfitting. 

Finally, Tab. 1 compares the performance of the LSTM 

model against other deep learning models such as 

BiLSTM, CNN, DNN, and RNN. Based on evaluation 

metrics such as accuracy, recall, and F1-score, the 

proposed model demonstrates superior performance, 

achieving over 93.23% accuracy, outperforming the other 

models. Although the BiLSTM model shows comparable 

performance, its more complex architecture results in a 

longer training time. 

 
(a) 

 
(b) 

Fig.5. Training graph the proposed model with: (a) accuracy; 

and (b) loss 
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IV. CONCLUSION 

The paper introduces a model for automatic detection of 

optical fiber anomalies or faults in optical networks, LSTM 

combined with MI feature selection technique. By building 

LSTM models in Python programming language and 

testing them on OTDR dataset, the study proves that the 

model can detect optical fiber faults well with an accuracy 

of up to more than 96%. The results show that with 25 

features of the dataset, the model has the same performance 

as the model using all 31 features. In addition, the study 

also compares the proposed model with 4 other deep 

learning models (BiLSTM, CNN, DNN and RNN), thereby 

emphasizing the feasibility of the proposed model. 
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PHÁT HIỆN LỖI SỢI QUANG TRONG GIÁM SÁT 

SỢI QUANG SỬ DỤNG MÔ HÌNH HỌC SÂU 

 

Tóm tắt: Mạng truyền thông truy cập và truyền ngược 

phụ thuộc rất nhiều vào quản lý mạng quang hiệu quả để 

ngăn ngừa gián đoạn dịch vụ và đảm bảo tuân thủ Chất 

lượng dịch vụ (QoS). Các loại lỗi mới trong mạng quang 

đặt ra những thách thức có thể khiến mạng phải đối mặt với 

nhiều rủi ro khác nhau. Các kỹ thuật phát hiện truyền thống 

ngày càng không đủ để giải quyết những vấn đề này. 

Ngược lại, Học sâu (DL) đã nổi lên như một phương pháp 

tiếp cận đầy hứa hẹn để xác định và ngăn ngừa lỗi. Nghiên 

cứu này giới thiệu một số đóng góp quan trọng giúp phân 

biệt nó với các hệ thống quản lý lỗi thông thường. Đóng 

góp đầu tiên là phát triển mô hình Bộ nhớ dài hạn ngắn 

(LSTM), tích hợp với kỹ thuật Thông tin tương hỗ (MI), để 

đánh giá hiệu quả kết hợp của chúng trong việc phát hiện 

các sợi quang thông thường và bảy loại lỗi riêng biệt, bao 

gồm cắt sợi, nghe trộm sợi (khai thác sợi), đầu nối bẩn, mối 

nối xấu, uốn cong, phản xạ và đầu nối PC, đạt tỷ lệ chính 

xác lên tới 93,23%. Cuối cùng, mô hình được đề xuất được 

so sánh với các mô hình học sâu khác, chẳng hạn như 

BiLSTM, CNN, DNN và RNN, để đánh giá các số liệu hiệu 

suất quan trọng của mô hình AI. 

 

Tab.1. Performance comparison between deep learning models 

Model 

Metrics 

LSTM BiLST

M 

CNN DNN RNN 

Accuracy 

on training 

set 

0.9657 0.9745 0.9429 0.8962 0.2285 

Accuracy 

on 

validation 

set 

0.9323 0.9369 0.8945 0.9536 0.3112 

Recall 0.9329 0.9372 0.8945 0.9534 0.3047 

F1-score 0.9323 0.9371 0.8943 0.9528 0.2296 
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Từ khóa: phát hiện lỗi sợi quang, mô hình học sâu, 

LSTM, MI. 

 
 

 Thuy Tran Thi Thanh graduated 
from the Posts and 
Telecommunications Institute of 
Technology with a Bachelor's degree 
in 2021 and completed the Master's 
program in 2023. Currently, she is a 
lecturer in the Department of 
Electronics Engineering at the Posts 
and Telecommunications Institute of 
Technology. Her primary research 
interests include integrated 

optoelectronic circuits, high-speed optical information 
systems, IoT, and the application of artificial intelligence in 
IoT. 
 
 

Tho Van Nguyen is a lecturer at the 
Vietnam-UK Institute for Research 
and Training, University of Danang 
and a researcher at the Institute of 
Advanced Science and Technology.  
He received the M.Eng degrees in 
Telecommunications Engineering 
from Ha Noi university of Science 

and Technology in 2013, respectively. Currently, he is a 
graduate student at the Posts and Telecommunications 
Institute. His current research interests include 
communication systems, image/video processing, 
machine learning, and deep learning.  

 
Cao Dung Truong was born in Thanh 
Hoa, Vietnam, in 1980. He received the 
Engineer, Master of Science, and Ph.D. 
degrees from Hanoi University of 
Science and Technology, Hanoi, in 
2003, 2006, and 2015, respectively. He 
is currently a Lecturer in the 
Department of Electronic Engineering1, 
Posts and Telecommunications 
Institute of Technology, Hanoi, 
Vietnam. His research interests include 

photonic integrated circuits, plasmonics, high-speed 
optical communication systems, smart IoT networks, 
applications of deep learning models for photonics design, 
and AI in photonics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 

SOÁ 04 (CS.01) 2024 TAÏP CHÍ KHOA HOÏC COÂNG NGHEÄ THOÂNG TIN VAØ TRUYEÀN THOÂNG        9




