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Abstract—An Autonomous Vehicle (AV) is a form of 

vehicle that can run by itself without calling for direct 
human intervention. For AVs to properly function in real-
world settings, they need to be equipped with sophisticated 
perception and situational awareness. These abilities will 
enable them to effectively handle high-stress scenarios, 
make intelligent decisions, and ensure safety for users at 
all times. Having said that, the perception capabilities of 
AVs, which rely on sensors like cameras, LiDAR, and 
radar, have inherent limitations in range and detection 
accuracy. For instance, an AV may fail to detect objects 
obscured by other obstacles, either a moving or stationary 
one.  

Cooperative perception is thus a technology that can 
revolutionise the development of AVs, by allowing 
connected and autonomous vehicles (CAVs) to share 
information about detected objects via vehicle-to-vehicle 
(V2V) communication. This approach not only can 
improve the accuracy and range of CAV detection, but 
also significantly enhances their awareness of the 
surrounding environment.  

Our research introduces a cooperative perception 
mechanism to improve the accuracy in detecting objects 
around the environment of AV. The proposed simulation 
framework provides a comprehensive environment for 
evaluating traffic models, vehicle models, communication 
models, and object detection models. Simulations 
performed in real mobile scenarios show that collaborative 
perception can improve object detection accuracy by up to 
35% compared to independent detection methods. 
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I. INTRODUCTION 

 In recent years, advancements in vehicle technology 

have led to the development of features such as automatic 

parking, cruise control, and autopilot systems, all 

designed to assist drivers and reduce the likelihood of 

accidents.  

These innovations in autonomous vehicles have 

significantly contributed to road safety, addressing the  

 

fact that 94% of accidents are caused by human error 

[1]. Beyond enhancing safety, autonomous vehicles offer 

the potential to improve mobility for many people, 

including those with physical limitations that prevent 

them from driving conventional vehicles.  

 Despite these benefits, a critical challenge in 

autonomous driving remains the accurate detection and 

interpretation of objects encountered on the road, such as 

vehicles, traffic lights, signs, pedestrians, and railroad 

crossings. Achieving high precision in identifying and  

responding to these objects is essential for ensuring safe 

and efficient autonomous navigation. For human-driven 

and autonomous vehicles, capturing sensor data from 

blind spots is vital for preventing collisions and avoiding 

deadlocks. However, the environmental perception 

capabilities of local on-board sensors are limited in both 

coverage and detection accuracy [2]. Objects that are 

distant or obscured by other road elements may go 

undetected or be inaccurately classified, posing a 

significant challenge to the reliability and safety of 

autonomous systems.   

 Cooperative perception is an emerging technology 

aimed at enhancing road safety by allowing connected 

vehicles to share their raw or processed sensor data with 

nearby vehicles via Vehicle-to-Vehicle (V2V) 

communication. Connected and Automated Vehicles 

(CAVs) utilize V2V communications to augment the 

capabilities of their onboard sensors, thereby improving 

both safety and driving performance. Through the 

exchange of sensor information among CAVs, V2V 

communications help mitigate the limitations of 

individual sensor systems. By sharing this information, 

CAVs can extend their field of view beyond the range of 

their sensors and enhance detection accuracy. This 

process, also known as collective perception or 

cooperative sensing, has been standardized by the 

European Telecommunications Standards Institute 

(ETSI) [3]. 

To facilitate collaborative object detection, some 

studies have proposed and evaluated the exchange of 

raw sensor data between vehicles [4]. However, sharing 

raw data requires high bandwidth, compromising the 

system’s scalability. Additionally, it increases system 

complexity and the computational load needed to process 

the large volumes of data received from multiple CAVs. 

Consequently, most research to date has focused on 

exchanging processed information about detected objects, 
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such as the locations, sizes, and classifications of critical 

objects like cars, pedestrians, and cyclists in 3D space, 

which enables more efficient and effective cooperative 

sensing. 

In this paper, we present an approach that leverages 

cooperative perception to enhance 3D object detection 

and segmentation in urban environments. To facilitate the 

exchange of detected information, Connected and 

Automated Vehicles (CAVs) use Collective Perception 

Messages (CPMs), as defined by the European 

Telecommunications Standards Institute (ETSI) [3].  

 

 

Figure 1. Detected data sharing in Cooperative Perception. 

These message generation rules, which will be 

discussed in detail later, specify that a vehicle must send 

a CPM in three scenarios: at regular intervals, upon 

detecting a new object, or when an already detected object 

undergoes a significant update in terms of position or 

velocity. To design and develop a simulation environment 

that supports cooperative perception, we integrated 

multiple open-source software components, including a 

traffic model, vehicle model, communication model, and 

object classification model. This extended framework 

provides a foundation for further research into optimizing 

the system, particularly in addressing challenges related 

to communication efficiency, computational load, and 

perception accuracy. 

The contributions of this paper are as follows: 

1) We investigate various object detection methods in 

autonomous vehicles and how cooperative perception 

addresses their limitations. 

2) We design and develop a simulation environment 

integrating multiple open software and tools to assess 

our scheme in a repeatable manner. 

3) We evaluate scenarios in a simulated environment 

and demonstrate the effectiveness of cooperative 

perception in object detection. 

 

II. PRELIMINARIES 

A. Object detection in Autonomous Vehicles (AVs) 

Object detection is a crucial task for autonomous 

vehicles, involving the identification and classification of 

objects in the vehicle’s environment, such as pedestrians, 

vehicles, traffic signs, and obstacles. Recent advances in 

Artificial Intelligence (AI), Machine Learning (ML), and 

Deep Learning (DL) have significantly enhanced these 

technologies. The object detection process typically 

includes several key steps: 

• Bounding Boxes: The algorithm detects objects and 

encloses them within rectangular boxes on the image 

plane or 3D bounding boxes that define the object’s 

dimensions and position. 

• Classification: Each detected object is categorized 

into classes such as cars, pedestrians, or traffic signs. 

• Localization: Specifies the position of detected 

objects using x, y, and z coordinates, providing 

information about the object’s location, size, and 

orientation relative to the vehicle. 

Applications of object detection in autonomous 

vehicles include traffic sign detection, lane line detection, 

obstacle avoidance, and spatial awareness. 

 

 
 

       Figure 2.  Occlusion issue. 

 There are two main categories of object detection 

algorithms: one-stage detectors and two-stage detectors. 

One-stage detectors perform object detection in a single 

step without requiring a preliminary stage to identify 

potential object regions. This makes them well-suited for 

real-time applications due to their shorter processing time. 

Notable one-stage detection algorithms include YOLO, 

SSD, RetinaNet, YOLOv3, YOLOv4, and YOLOR [5]. 

 Two-stage detectors are more complex and consist of 

two parts: the first stage generates regions of interest 

(RoI), and the second stage performs regional 

classification and provides a precise description of the 

object’s location based on the RoI. Prominent two-stage 

algorithms include Faster R-CNN, R-FCN, FPN, and 

Cascade R-CNN [6]. 

B. Cooperative Perception in Connected Autonomous 

Vehicles (CAVs) 

A Connected Autonomous Vehicle (CAV) is a 

complex system comprising several components, 

including (i) a sensor-based perception system, (ii) a 

wireless communication interface, (iii) a map database, 

(iv) a navigation system, (v) an autonomous vehicle 

controller, and (vi) a localization component [7], [8]. This 

work focuses on the sensor-based perception system and 

the wireless communication interface.  
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Firstly, the sensor-based perception system integrates 

multiple sensors, such as cameras, LiDAR, radar, and 

GPS, to enable the vehicle to perceive its surrounding 

environment. It includes a sensor fusion component that 

combines data from these sensors to enhance accuracy 

and consistency. Additionally, advanced algorithms, AI, 

and machine learning are employed to interpret the 

observed data, ensuring safe navigation and operation on 

the roads. 

 Secondly, the wireless interface enables the system to 

transmit and receive information using mechanisms such 

as 4G/5G cellular interfaces, satellite communications, or 

embedded infrastructure. We assume that each connected 

vehicle is equipped with an On-Board Unit (OBU) that 

supports Dedicated Short-Range Communications 

(DSRC), Wireless Access in a Vehicular Environment 

(WAVE) protocol stack [9], and/or Cellular V2X (C-

V2X). 

 

          Figure 3. Model of sensor fusion. 

Given that autonomous driving is both life-critical and 

safety-critical, the cooperative protocol must guarantee 

safety under practical conditions, ensuring that packet 

losses or delays do not compromise vehicle safety. 

III. COOPERATIVE PERCEPTION PLATFORM FOR 

CAVS 

A. Our System Model 

Our Connected and Autonomous Vehicle (CAV) 

system is depicted in Fig. 3. In this model, each vehicle is 

equipped with three cameras for capturing Left, Front, and 

Right views. Vehicles locally integrate object detection 

information from multiple on-board sensors. Additionally, 

our system globally integrates cooperative perception data 

received through V2V communication networks from 

other vehicles, utilizing Cooperative Perception Messages 

(CPM). CPM messages include details such as the relative 

positions, orientation, type, and ID of detected objects. 

The CPM generation rules in this study adhere to the 

ETSI ITS specifications [3]. Vehicles are required to 

evaluate each TGenCpm interval to determine if a new CPM 

should be generated. TGenCpm should be set between 100 

ms and 1000 ms and can be adjusted by the Dynamic 

Channel Control (DCC) based on channel load. A new 

CPM is generated if a new object is detected, or if any of 

the following conditions are met: 

1) The absolute difference (∆P ) between the current 

position of the object and its previous recorded 

position is greater than 4 meters. 

2) The absolute difference (∆S) between the current 

speed of the object and its previous recorded 

speed is greater than 0.5 meters per second, and 

the time difference (∆T ) between the current time 

and the last recorded time for the object is greater 

than 1 second. 

3) A vehicle will include all newly detected 

objects and those that meet at least one of the 

aforementioned conditions (i.e., ∆P > 4 

meters, ∆S > 0.5 meters per second, or ∆T > 1 
second) in a new CPM. Vehicles will generate a 

CPM every second regardless of whether any 

detected objects meet the specified conditions. 

Information about on-board sensors is included in 

the CPM only once per second. 
 

B. Cooperative perception platform for CAVs 

 

 

Figure 4. Software components in Cooperative perception 

platform for CAVs. 

 

The software components in the collaborative cognitive 

platform for CAVs are detailed in Fig. 4. 

1) CARLA Vehicle and Traffic Simulator: CARLA 

(Car Learning to Act) [10] is an open-source 

simulator designed for autonomous driving 

research. It provides a high-fidelity environment 

for testing and developing autonomous driving 

systems. CARLA supports a wide range of vehicle 

and traffic scenarios, featuring various urban and 

rural environments with detailed buildings, roads, 

and vegetation to mimic real-world conditions. 

The simulator supports a range of sensors, 

including cameras, LiDAR, radar, and GPS, 

which can be attached to vehicles to collect data 

and evaluate sensor fusion algorithms and 

perception systems. CARLA simulates a variety 

of traffic participants, including vehicles, 
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pedestrians, and cyclists, which will be the targets 

of object detection in this study. 

2) Object detection and segmentation module: For 

object detection, our platform uses YOLOv8 [11], 

an advanced version of the YOLO (You Only 

Look Once) series, which is a popular family of 

models designed for object detection tasks. YOLO 

models are distinguished by their ability to 

perform object detection in a single forward 

pass through the network, providing high-speed 

and accurate results. Since we are targeting 

autonomous driving tasks, objects other than 

vehicles, pedestrians, and cyclists will be filtered 

out. 

3) V2V Communication Simulator:  

To simulate vehicular communications, we have 

developed a Python-based tool named V2V 

Communication Simulator. The V2V 

Communication Simulator provides parameters 

for communication range and interference 

distance in vehicular communications. In its 

simplified version, we exclude the impact of 

packet loss caused by network congestion. 

4) Cooperative Perception Simulator:  

First, CPM messages are generated by each CAV 

as described in our system model and broadcast to 

nearby neighbors. Second, we have developed an 

object fusion module that integrates detection 

information from onboard sensors with CPM data 

based on object IDs and their association with 

objects from previous frames. In the future, we 

plan to explore more advanced fusion methods to 

optimize the system in terms of communication 

and computational efficiency. 
          

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Simulation Scenario 

To simulate vehicle mobility, we use the Carla 

Town05 map (Fig. 5), which features a squared-grid 

town layout with cross junctions and a bridge. This 

map includes multiple lanes in each direction and is 

characterized by numerous dual-lane urban roads 

intersecting at large junctions. These junctions provide 

access to a raised highway that forms a ring road 

around the town. 

For evaluation, each vehicle is equipped with three 

RGB cameras—right, front, and left—calibrated to 

cover a 150-degree field of view. Example images 

from the three cameras are shown in Fig. 6. All 

connected vehicles have uniform dimensions: 1.76 

meters in width, 4.54 meters in length, and 1.47 

meters in height. The simulation scenario includes 

various vehicle types and objects of different sizes, 

including buses, trucks, cyclists, and pedestrians. Only 

vehicles are equipped with network interfaces, while 

bicycles are not connected. Object occlusion may 

occur due to the blocking views of buildings, cars, 

buses, and trees. 

We evaluate the scenario 100 times with varying 

numbers of Connected and Autonomous Vehicles 

(CAVs). The evaluation involves comparing the 

number of correct detections with and without 

cooperative perception. 

For V2V communication, we use the following 

equation for the Probability of Successful Packet 

Reception in wireless communication: 

𝑃𝑆𝑅 = 𝑒𝑥𝑝 (−𝜆.
𝑆

𝐵
. 𝑑) (1) 

where: 

• PSR is the Probability of Successful Reception, 

indicating the chance that a packet is received 

correctly. 

• λ is the number of CPM (Cooperative Perception 

Messages) messages sent within a time window and 

the interference radius. This value is dynamic and 

depends on vehicle intensity and the CPM 

generation rule. 

• S represents the Packet Size, measured in bits. 

Larger packets are more prone to errors, affecting 

the probability of successful reception. 

 

 

 

 

 
Figure 5. Town05 Map in Carla [10]. 

 

Figure 6. Images from the right, front, and left 

cameras. 
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Figure 7. Average object detection ratio. 

• B denotes the Bandwidth, measured in bits per 

second (bps). It defines the channel capacity and 

the amount of data that can be transmitted per unit 

time. Higher bandwidth generally improves the 

reception probability. 

• d is the distance between the transmitter and 

receiver, measured in meters. Increased distance 

leads to greater signal attenuation, which can lower 

the probability of successful packet reception. 

B. Simulation Results 

 We present the average detection ratio to evaluate the 

system's effectiveness. If all vehicles on the road within a 

100-meter range are correctly detected by a CAV, the ratio 

is 100%. Intuitively, objects may not be detected if they 

are outside the camera's field of view, occluded, or at a far 

distance. Detections shared from other CAVs may 

improve the ratio; however, if the V2V network becomes 

congested (with low PSR), many shared detections may 

fail. 

Fig. 7 shows that the object detection success rate 

substantially improves with the use of cooperative 

perception. Specifically, with 50 CAVs, the success rate 

increases by 18%. This enhancement becomes more 

pronounced with higher vehicle numbers, with a 27% 

increase at 100 CAVs and a 35% increase at 150 CAVs. 

The improvement largely stems from cooperative 

perception’s ability to address visibility issues caused by 

physical obstructions such as buildings at intersections 

and vehicles stopped at traffic lights. Cooperative 

perception enables vehicles to share detection 

information, effectively mitigating the blind spots 

created by these obstructions and providing a more 

comprehensive view of the environment. However, when 

the number of vehicles reaches 200, the success rate 

levels off and experiences a slight decline. This drop is 

due to network congestion, which hampers the efficiency 

of data sharing and negatively impacts overall detection 

performance. 

In addition to object detection, we evaluate the impact 

of cooperative perception on instance segmentation, 

which involves delineating and classifying each object 

instance with pixel-level precision. Instance 

segmentation is more complex and computationally 

intensive than object detection, as it requires detailed 

pixel maps for each identified object, which increases the 

data transfer workload. Our results, shown in Fig.8, 

demonstrate that cooperative perception significantly 

enhances instance segmentation performance by 

enabling vehicles to share detailed segmentation data. 

This shared data helps create a more comprehensive and 

accurate environmental model, which is crucial for tasks 

such as precise object tracking and scene understanding 

in Autonomous Vehicle. 

However, despite these benefits, the success rate for 

instance segmentation is impacted by network 

congestion more severely than object detection. We see 

that while cooperative perception initially improves 

instance segmentation performance, the advantage 

diminishes sooner—specifically when the number of 

vehicles reaches around 100. 

 
 

Figure 8. Average instance segmentation ratio 

 

This is because the network becomes congested 

faster due to the high volume of data required for 

detailed pixel maps. The increased data transfer 

demands lead to reduced efficiency in network 

communication, resulting in a noticeable decline in 

instance segmentation success rates earlier than what 

is observed with object detection. Thus, while instance 

segmentation offers substantial benefits for enhancing 

the accuracy of Autonomous Vehicle systems, its 

effectiveness is limited by network capacity 

constraints, highlighting the need for optimized data 

management and network solutions in cooperative 

perception systems. 

V. CONCLUSION 

The benefits of cooperative perception in autonomous 

vehicle driving have been evaluated in this study, along 

with its effects on object detection tasks. Also, we built 

a platform that combines many open-source software 

tools for modeling perception, communication, and 

traffic in automobiles. Scalability is provided by this 

platform for further algorithmic improvements meant to 

improve the system as a whole. 

Our analysis showed that shared perception data may 

successfully reduce occlusion problems, especially in 
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towns and cities. Results also emphasized the necessity 

of efficient network congestion control and a number of 

other elements that can affect system performance, 

including effective data creation and selection. These 

results highlight the significance of ongoing cooperative 

perception research and development to enhance 

autonomous driving capabilities. 
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NÂNG CAO NHẬN THỨC CỦA XE TỰ HÀNH: 

PHÁT HIỆN HỢP TÁC QUA GIAO TIẾP V2V 

Tóm tắt: Xe tự hành (Autonomous Vehicle - AV) là 

loại phương tiện có khả năng di chuyển mà không cần sự 

can thiệp trực tiếp của con người. Để những chiếc xe này 

trở thành hiện thực, chúng phải được trang bị các khả 

năng nhận thức tiên tiến và nhận biết tình huống để có 

thể quản lý hiệu quả các kịch bản áp lực cao trong thế 

giới thực, đưa ra các quyết định thông minh và đảm bảo 

các hành động an toàn nhất có thể mọi lúc. Tuy nhiên, 

khả năng nhận thức của các phương tiện cá nhân, dựa 

vào các cảm biến như camera, LiDAR, và radar, vốn có 

giới hạn về phạm vi bao phủ và độ chính xác trong việc 

phát hiện. Chẳng hạn, một chiếc xe có thể không phát 

hiện được các đối tượng bị che khuất bởi các chướng 

ngại vật di chuyển hoặc đứng yên khác.  

 Do đó, nhận thức hợp tác là một công nghệ có thể cách 

mạng hóa sự phát triển của AV, bằng cách cho phép các 

phương tiện tự động và kết nối (CAV) chia sẻ thông tin 

về các vật thể được phát hiện thông qua giao tiếp giữa xe 

với xe (V2V). Cách tiếp cận này không chỉ có thể cải 

thiện độ chính xác và phạm vi phát hiện CAVs mà còn 

nâng cao đáng kể nhận thức của họ về môi trường xung 

quanh.  

 Nghiên cứu của chúng tôi giới thiệu cơ chế nhận thức 

hợp tác nhằm nâng cao độ chính xác trong việc phát hiện 

các vật thể xung quanh môi trường của AV. Khung mô 

phỏng được đề xuất cung cấp một môi trường toàn diện 

để đánh giá các mô hình giao thông, mô hình phương 

tiện, mô hình truyền thông và mô hình phát hiện đối 

tượng. Mô phỏng được thực hiện trong các tình huống di 

động thực tế cho thấy nhận thức cộng tác có thể cải thiện 

độ chính xác của việc phát hiện đối tượng lên tới 35% so 

với các phương pháp phát hiện độc lập. 

Từ khóa: Phương tiện tự động và kết nối , nhận thức 

hợp tác, giao tiếp giữa các phương tiện. 
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