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Abstract: The emergence of Bluetooth Low Energy 

(BLE) technology has created many opportunities for 

indoor localization. However, extracting fingerprint 

features from the Received Signal Strength Indicator 

(RSSI) values of Bluetooth signals often yielded results 

with significant errors and instability. This study utilizes 

a Kalman filter to stabilize received RSSI values. It 

employs Autoencoder and Convolutional Autoencoder 

models to extract distinctive features and compares 

random test points with reference points in a database 

using normalized cross-correlation. 
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I. INTRODUCTION 

Indoor localization has long been a crucial issue in 

various large-scale applications today, such as inventory 

management, equipment tracking, and product 

monitoring. Currently, there are numerous technologies 

for indoor positioning, including Wi-Fi, Ultra-Wideband, 

Bluetooth, optical technology, and infrared. However, 

these technologies have inherent limitations, such as high 

production costs, energy consumption, or significant 

inaccuracies. Bluetooth Low Energy (BLE) technology 

has been researched and developed to address these 

challenges. Its advantages include low production cost 

energy efficiency, and easy deployment. 

Nonetheless, it does not match the precision of Ultra-

Wideband (UWB) and lacks the coverage of Wi-Fi. 

Several BLE-based positioning methods have been 

proposed, among which BLE fingerprinting stands out for 

its relatively good accuracy. Hence, this research focuses 

on developing an indoor positioning method based on 

BLE fingerprinting. 

This approach places some Bluetooth beacons (BC) at 

Predetermined locations. After a predefined period of 

time, these BCs transmit data packets containing IDs and 

additional information. The device to be located will 

continuously collect information and transmit it to the 

server for processing. The device's location will be 

estimated based on BLE fingerprint characteristics. This 

method is divided into two main phases: offline and 

online. The offline phase collects Received Signal 

Strength Indicator (RSSI) values from BCs at each 

reference point (RP). These values are processed to 

cextract features and stored in a fingerprint map database. 

The online phase consists of collecting RSSI values from 

BC signal packets. These values are also used to extract 

fingerprint features, which are then compared with 

reference points. The reference points with the most 

similar fingerprint features are selected to calculate the 

coordinates of the target location.  

 

Several BLE fingerprinting methods have been 

proposed. Zou and colleagues [1] applied graph 

optimization to achieve a best-case accuracy of 1.27 

meters. Martin and colleagues [2] employed Gaussian 

kernel-based fingerprinting with an accuracy below 1.5 

meters in 90% of cases. Subedi and colleagues [3] utilized 

a two-step fingerprint-based approach with an accuracy of 

1.05 meters. Li and colleagues [4] utilized an eight 

neighborhoods template matching mechanism with a 1-

meter accuracy.   

This paper proposes an indoor localization method 

based on BLE fingerprinting, specifically fingerprint 

feature extraction. It involves deploying six BCs around a 

room, with the RSSI values of each reference point stored 

in the fingerprint database. RSSI measurements are 

susceptible to noise, so the Kalman filter and deep 

learning models like Autoencoders and Convolutional 

Autoencoders are employed to reduce noise and data 

dimensionality. The Minkowski distance is calculated 

between the measured fingerprint and reference 

fingerprint to identify the k nearest reference points with 

the measured fingerprint. This information is used to 

calculate coordinates and assess accuracy.   

This paper is organized as follow: Section 2 provides 

an overview of the dataset construction and the algorithms 

used. Experimental results are presented and compared 

with previous research findings in Section 3. Conclusions 

and future directions are discussed in Section 4. 

 

II. METHOD 

The critical steps of indoor positioning using 

fingerprint features are illustrated in Figure 1. Each step 

in our proposed method is presented in detail below.  
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Figure 1. The main steps in the proposed method. 

A. Data collection 

Let’s assume that there are 𝑁 reference points within 

the coverage area. At each reference point, RSSI values 

are measured over a period and organized into the 

following matrix:  

 

𝑅 =  [

𝑟1(1) 𝑟1(2) ⋯ 𝑟1(𝐵)
𝑟2(1) 𝑟2(2) ⋯ 𝑟1(𝐵)

⋮ ⋮ ⋱ ⋮
𝑟𝑁(1) 𝑟𝑁(2) … 𝑟𝑁(𝐵)

] (1) 

 

In matrix (1), 𝑟𝑛(𝑏) represents the RSSI value at 

reference point 𝑛 obtained from beacon 𝑏. Here, 𝑛 =
1, 2, 3, … 𝑁, representing the sequential number of 

reference points, and  

𝑏 = 1, 2, 3, … 𝐵, the number of beacons used within a 

defined range.  

 

B. Kalman Filter 

The Kalman filter, introduced by Rudolf E. Kalman 

and published in 1960 [7] is a widely used tool in control 

systems. It is employed to estimate the state of a process 

in the presence of noise in measurements. This method 

works by determining the estimated state of the process 

based on actual measurements and the ideal state, to 

minimize the mean square error between them. The 

Kalman filter consists of two primary steps: Prediction 

and Measurement Update [8], [9]. The visualization of the 

Kalman filter process is depicted in Figure 2. 

 

 
Figure 2. Implementation of the Kalman filter. 

Prediction 

The current state 𝑥𝑡 and error covariance matrix 𝑃𝑡 of the 

process are estimated in a general form as: 

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 (2) 

𝑃𝑡 = 𝐴𝑡𝑃𝑡−1𝐴𝑡
𝑇 + 𝑄 (3) 

Where: 

𝐴𝑡: State transition model matrix 

𝐵𝑡: Control input model matrix 

𝑢𝑡: Control vector 

𝑄𝑡: Process noise covariance matrix 

Measurement Update 

The initial task in the update process is to compute the 

Kalman Gain, as shown in Eq.4: 

𝐾 = 𝑃𝑡𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡𝐻𝑡

𝑇 + 𝑅𝑡)−1 (4) 

Next, the expected state and covariance matrix are 

updated as per Eq.5 and Eq.6: 

𝑥𝑡
′ = 𝑥𝑡 + 𝐾(𝑧𝑡 − 𝐻𝑡𝑥𝑡) (5) 

𝑃𝑡
′ = (1 − 𝐾𝑡𝐻𝑡)𝑃𝑡 (6) 

where, 𝐻 is the matrix relating to state 𝑥𝑡 through the 

measurement 𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑅𝑡, where 𝑅𝑡 is a random 

variable representing the measurement noise covariance. 

The Kalman filter operates recursively: the Prediction 

process estimates the current provisional state based on 

the previous state, and then the Measurement Update 

process adjusts the estimate with an actual measurement. 

These steps are repeated with previous posterior estimates 

used to predict new prior estimates [9].  

With our collected RSSI data, each vector 𝑟𝑛(𝑏) =
{𝑟𝑠𝑠𝑖1, 𝑟𝑠𝑠𝑖2, … , 𝑟𝑠𝑠𝑖𝑅} is passed through the Kalman 

filter, with the first value as the average of R samples in 

each vector: 

𝑟𝑠𝑠𝑖0 =
1

𝑅
∑ 𝑟𝑠𝑠𝑖𝑖

𝑅

𝑖=1

 (7) 

 The Kalman filter enhances the stability of our dataset, 

thereby improving the fingerprint features for each 

reference point and enhancing training performance. 

 

C. Fingerprint Features Extraction 

1. Autoencoder  

Autoencoder (AE) is a neural network model in 

machine learning and computer vision designed for 

unsupervised data encoding. It aims to learn a lower-

dimensional representation (encoding) for higher-

dimensional data, reducing complexity and saving 

computational resources. AE is often used for 

dimensionality reduction and feature extraction tasks. 

Figure 3 provides a visual representation of AE 

architecture, consisting of Encoder, Code, and Decoder: 

Encoder: Receives input data and transforms it into a 

lower dimensional compressed form. The encoder 

typically consists of a sequence of neuron layers, learning 

to extract essential information from the data and 

represent it as a compressed vector. The neuron layers in 

the encoder often employ activation functions like ReLU, 

sigmoid, or hyperbolic tangent. 

Code: Contains the compressed data, also known as the 

output of the encoder. It is a crucial part of the network 

because it holds the features of the input data. 

Decoder: Receives the compressed data from the encoder 

and attempts to reconstruct the original data. The decoder 

also consists of a sequence of neuron layers, transforming 

the compressed data into the original data while 

minimizing the reconstruction error. 

The training process of an Autoencoder aims to 

minimize the error between the original data and the 

reconstructed data by adjusting the encoder and decoder 

weights and parameters. Loss functions commonly 

include Mean Squared Error (MSE) and Binary Cross-

Entropy (BCE). 
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Figure 3. Proposed Autoencoder model structure. 

Each reference point in our database has data vectors 

of size 200 × 6, which are flattened into 1200 × 1 

vectors to match the input size of the AE model. After 

passing through the encoder, the data is compressed into 

a 12 × 1 code, which is then decoded to produce an output 

of 1200 × 1. In this study, the Autoencoder model uses 

the hyperbolic tangent (tanh) activation function, employs 

the Adam optimization algorithm, and uses Mean Squared 

Error (MSE) as the loss function. 

2. Convolutional Autoencoder 

The Convolutional Autoencoder (CAE) combines 

convolutional neural network principles with an 

autoencoder. It is often used for unsupervised learning 

tasks. Like an autoencoder, the CAE architecture consists 

of an Encoder, Code, and Decoder [10], [11]. The 

proposed CAE architecture in this study is illustrated in 

Figure 4. 

The encoding part processes the input as a matrix using 

convolutional layers to produce lower-dimensional output 

than the input matrix. The decoding part takes the lower 

dimensional representation from the encoding part and 

transforms it back to the original matrix size using 

decoding layers. The training process of the 

Convolutional Autoencoder is similar to that of the 

Autoencoder, with the aim of minimizing the difference 

using Mean Squared Error (MSE) as the loss function. 

 

Figure 4. Proposed Convolutional Autoencoder model 

structure. 

Because the input of the CAE model is a matrix, each 

1200 × 1 data vector is transformed into a 36 × 36 

matrix with 96 zero-padding elements. 

 

 

Figure 5. The data vector is converted to matrix form 

for input to the Convolutional Autoencoder. 

D. Coordinate Prediction 

1. Correlation 

Signal correlation is a crucial aspect in signal research 

and analysis. In this study, a correlation system is used to 

compute and compare the input signal with an available 

fingerprint dataset. For two discrete signals 𝑥[𝑛] and 𝑦[𝑛], 
the calculation of their correlation, denoted as 𝐶(𝑥, 𝑦), is 

performed using the following formula: 

𝐶(𝑥, 𝑦) = ∑ 𝑥[𝑛]𝑦[𝑛]

𝑛2

𝑛1

 (8) 

Where 𝑛1 and 𝑛2 represent specific time intervals for 

calculating the correlation between the two signals [12]. 

In a special case where the two signals are identical, it can 

be observed that in this case, the main correlation is the 

signal’s energy: 

𝐶(𝑥, 𝑥) = 𝐸(𝑥) (9) 

2. Normalized Cross – Correlation 

Normalized Cross-Correlation (NCC) is used in signal 

processing to measure the degree of similarity or 

correlation between two signals. NCC is typically 

employed to search for a specific signal pattern within a 

larger signal. 

This research proposes using the NCC coefficient to 

compare the input signal with a pre-existing fingerprint 

database to determine the most accurate coordinates. NCC 

between two signals 𝑥[𝑛] and 𝑦[𝑛] is determined by the 

following formula [5]:  

𝑁𝐶𝐶(𝑥, 𝑦) =
∑ 𝑥[𝑛]𝑦[𝑛]𝑛2

𝑛1

𝐸(𝑥)𝐸(𝑦)
 (10) 

This formula normalizes the aggregate correlation by 

dividing the numerator by the product of the energy of two 

signals, 𝑥[𝑛] and 𝑦[𝑛]. The result falls within the range of 

−1 to 1, indicating the level of similarity between the two 

signals. A value of 1 typically represents complete 

correlation, while −1 indicates complete inverse 

correlation. A value close to 0 generally indicates low or 

no correlation between the two signals. 

Utilizing this approach involves the identification of 𝑘 

reference points exhibiting the closest distance. 

Eventually, the point coordinates to be determined are 

predicted as the centroid of these 𝑘 reference points. 

Different values of 𝑘 result in different predicted 

coordinates, calculated using formula (11): 

(𝑥, 𝑦) =
1

𝑘
∑(𝑥𝑖 , 𝑦𝑖)

𝑘

𝑖=1

 (11) 
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III. EXPERIMENTS AND RESULTS 

A. Data collection 

The experiment was conducted on the 6th floor of the 

Ta Quang Buu Library at Hanoi University of Science and 

Technology, Vietnam. Six BLE beacons were placed at 

coordinates (0,0), (0,4), (0,8), (8,0), (8,4), and (8,0) 

within an 8𝑚 ×  8𝑚 area, as described in Figures 6 and 7. 

The beacons and Bluetooth signal strength receiving 

devices were on the same floor of the plane. 

 

 

Figure 6. The experimental environment. 

 

There is a total of 75 reference points on the map. At 

each reference point, 200 RSSI value samples were 

gathered for a specific beacon. The reference points are 

placed one meter apart to ensure that the data density is 

not too dense and to avoid confusion between reference 

points during feature extraction. Additionally, 20 random 

test points were collected to assess the performance of the 

fingerprint feature extraction model, as depicted in Figure 

7 and Figure 8.  

 Figure 8. Test points are collected randomly. 

 

Figure 9 presents a specific example of RSSI data from 

200 samples recorded at two reference points (𝑅𝑃1 and 

𝑅𝑃2) for a specific beacon. Conversely, Figure 10 

illustrates RSSI data from  

200 samples obtained from two different beacons (𝐵𝐶1 

and 𝐵𝐶2) at a reference point. These data illustrate the 

uneven signal variations. This inconsistency may be due 

to the influence of the surrounding environment and 

factors causing random errors during the experimental 

process. This issue poses a significant challenge for 

indoor localization methods relying on BLE signals. 

B. Utilizing Kalman Filter 

As explained in the previous section, noise factors can 

significantly affect the process of fingerprint feature 
Figure 7. Arrange the experiment to collect RSSI 

values from beacons at each reference point. 

 

 
Figure 9. The RSSI values of the same beacon is obtained at different reference point. 
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extraction and BLE signal-based localization. 

Consequently, the collected database underwent Kalman 

filtering to partially reduce the noise in the 

aforementioned values. Moreover, it enhances the feature 

characteristics of RSSI values at each reference point. 

Figure 11 below illustrates the difference before and after 

employing Kalman filtering. It is evident that, after 

passing through the Kalman filter, the RSSI data 

eliminates noisy values, resulting in new, more stable 

data. 

 

 

Figure 10. The RSSI values obtained from two different beacons at the same reference point. 

 

Figure 11. The raw RSSI values and after passing it through the Kalman Filter. 

C. Experimental results 

Table 1 displays the results using two methods, one 

incorporating the Kalman filter and the other without the 

filter, with different values of 𝑘 (𝑘 = 3,4,5,6,7). 

Parameters in the table include the mean, median, 

maximum, and minimum error values. Initially, a 

comparison is made between two methods, AE and CAE, 

revealing that the average error values for different 

𝑘 values are notably smaller with the CAE method than 

with the AE method. The AE method provides the 

smallest average error of 2.60m with 𝑘 = 4, while the 

CAE method yields the smallest average error of 1.07m 

with the same k value. When combined with the Kalman 

filter, it can be observed that the accuracy of the 

localization task improves. Specifically, with 𝑘 = 4, the 

AE_Kalman method achieves the smallest average error 

of 1.16m, which is an improvement compared to AE 

(2.6m), and the CAE_Kalman method delivers the 

smallest average error of 0.98m compared to CAE's 

1.07m. Of the four experimented methods, CAE_Kalman 

demonstrated the highest stability, showcasing a 

localization error ranging from 0.12m (𝑘 = 4) to 2.39m 

(𝑘 = 6). In contrast, the AE method shows a maximum 

localization error of 5.49m at 𝑘 = 3. 

Figures 12 and 13 illustrate cumulative distribution 

function (CDF) curves for the following methods: 

CAE_Kalman, CAE, AE_Kalman, and AE. It can be 

observed that CAE_Kalman and CAE have similar CDF 

curves, while AE_Kalman and AE exhibit similar curves. 

When the Kalman filter is applied, CAE_Kalman 

outperforms CAE, and AE_Kalman outperforms AE. 

CAE_Kalman and CAE have a lower error range of less 

than 2m, whereas AE_Kalman and AE have an error range 

of less than 4m. Using Kalman filtering improves the 

performance of fingerprint-based localization and reduces 

the error range. 

Figure 14 illustrates the localization error box and 

whisker plots for the four methods employed in this study, 
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specifically at a value of 𝑘 = 4. It is evident that the CAE 

method generally outperforms the AE method, and the 

comparison between applying and not applying the 

Kalman filter in data processing shows a clear difference 

in efficiency. 

The CAE method combined with the Kalman filter (𝑘 =
4) is compared to studies using native BLE fingerprint-

based localization. The comparison is made on various 

aspects such as the number of beacons, used, the area size, 

and the minimum, average, and maximum, location 

errors. As explained in section 2, Mai et al [5] used 

fingerprinting combined with Pedestrian Dead Reckoning 

and Particle filter to achieve a minimum average error of 

1.18m. Alvin Riady et al [6], with a larger localization 

scale and a greater number of beacons than our method, 

achieved minimum average and maximum errors of 

1.1178m and 3.3601m, respectively. Li et al [4] used the 

ENTM method, developed by the KNN and WKNN 

methods, and achieved an average error of 1m. Table 4 

compares the CAE method combined with the Kalman 

filter and other methods. The comparison table shows that 

the proposed CAE method combined with the Kalman 

filter achieved an average error of 0.98m, significantly 

outperforming the compared methods. 

 

Table 1. Statistical parameters of the proposed methods with different k values (unit: m). 

Methods Statistics k = 3 k = 4 k = 5 k = 6 k = 7 

CAE_Kalman 

Mean  1.19 0.98 1.24 1.37 1.41 

Min  0.33 0.12 0.20 0.37 0.52 

Max  2.33 1.60 2.24 2.39 2.33 

Median 1.05 1.02 1.22 1.20 1.42 

Var 0.31 0.21 0.28 0.26 0.26 

Std 0.55 0.46 0.53 0.51 0.51 

CAE 

Mean 1.12 1.07 1.21 1.18 1.37 

Min 0.23 0.2 0.27 0.33 0.40 

Max 2.57 2.15 2.41 2.27 2.59 

Median 1.05 1.02 1.22 1.12 1.25 

Var 0.41 0.28 0.32 0.28 0.46 

Std 0.64 0.53 0.56 0.53 0.68 

AE_Kalman 

Mean 1.25 1.16 1.21 1.37 1.46 

Min 0.33 0.25 0.28 0.47 0.87 

Max 3.07 2.85 2.61 2.69 3.03 

Median 1.05 1.09 1.09 1.31 1.38 

Var 0.44 0.29 0.25 0.24 0.26 

Std 0.66 0.54 0.50 0.49 0.51 

AE 

Mean 2.82 2.60 2.76 2.69 2.72 

Min 0.94 0.25 0.28 0.17 0.77 

Max 5.49 4.75 5.07 4.78 4.90 

Median 2.96 2.65 2.66 2.71 2.71 

Var 1.94 1.51 1.95 1.70 1.64 

Std 1.39 1.23 1.40 1.31 1.28 

Table 2. Comparison of CAE incorporating Kalman filter with other fingerprint-based methods

Studies Methods 
Number of 

Becons 

Area size (m x 

m) 

Minimum Error 

(m) 

Average Error 

(m) 

Maximum 

Error 

(m) 

Mai et al [5] 

Pedestrian Dead 

Reckoning + 

Fingerprinting + 

Particle filter 

8 35 × 25 --- 1.18 --- 

Alvin Riady et al [6] ANN 23 19 × 12 0.1055 1.1178 3.3601 

Mingfeng Li et al [4] ENTM 4 8 × 8 --- 1 --- 

This study CAE + Kalmam filter 6 8 × 8 0.10 0.98 1.77 
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Figure 12. The localization error CDF curves, where 𝑘 = 4. 

 

  

Figure 13. Comparison of the localization error CDF 

curves of four methods, where 𝑘 =  4 

 

 

 

 

Figure 14. The localization error CDF curves box-

whisper plots, where 𝑘 =  4 

 

IV. CONCLUSION 

In this research, we employed four distinct methods to 

assess the performance of indoor localization: 

CAE_Kalman, CAE, AE_Kalman, and AE. Our study 

results reveal that the CAE model outperforms the AE 

model, highlighting the superiority of the CAE model in 
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fingerprint feature extraction for indoor localization. 

Additionally, we examined the impact of applying the 

Kalman filter to both models. The results demonstrate that 

using the Kalman filter significantly enhances the 

performance of both models compared to not using the 

filter. This underscores the effectiveness of improving the 

stability and accuracy of RSSI values obtained from BLE 

beacon signal transmitters. In summary, this research has 

elucidated the excellence of the CAE model and the 

positive effects of the Kalman filter in enhancing the 

performance of fingerprint feature extraction for indoor 

localization. This study has some limitations such as the 

test scenarios have not been implemented 

comprehensively, the influence of obstacles in the 

experimental environment on positioning has not been 

evaluated. Besides, the error assessment only stops at 

static error, that is, the influence of movement has not 

been calculated in the positioning error results. This study 

experiments with positioning in 2D coordinate space, the 

application in 3D space requires additional factors to be 

determined such as height, angle and direction of 

incoming waves between the signal transmitter and 

receiver, ... In terms of feature extraction, this research 

direction can be applied, however, it is necessary to adjust 

and supplement more suitable approaches in each specific 

problem. 

Improving the accuracy of indoor localization systems 

is an important issue. Therefore, more and more methods 

and algorithms are being proposed to reduce noise, 

increase stability and efficiency. Besides, designing an 

indoor localization system that operates in real time is the 

top goal to be achieved. There are many issues that need 

to be resolved with this orientation such as: hardware 

device delay in signal transmission between reference 

point and access point; propose prediction algorithms to 

improve speed and accuracy to match real-time 

conditions, etc. Finally, indoor positioning systems are 

needed to be integrated into applications and mobile 

devices for goods management or object tracking. 
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PHƯƠNG PHÁP ĐỊNH VỊ TRONG NHÀ BẰNG 

BLE HIỆU QUẢ SỬ DỤNG ĐẶC TRƯNG DẤU 

VÂN TAY 

 

Tóm tắt: Sự xuất hiện của công nghệ Bluetooth Low 

Energy (BLE) đã tạo ra nhiều cơ hội cho việc định vị trong 

nhà. Tuy nhiên, việc trích xuất các đặc trưng dấu vân tay 

từ các giá trị cường độ tín hiệu nhận được (RSSI) của tín 

hiệu Bluetooth thường mang lại kết quả có sai sót và mất 

ổn định. Nghiên cứu này sử dụng bộ lọc Kalman để ổn 

định các giá trị RSSI nhận được. Nó sử dụng các mô hình 

Bộ mã hóa tự động và Bộ mã hóa tự động tích chập để 

trích xuất các đặc trưng và so sánh các điểm kiểm tra ngẫu 

nhiên với các điểm tham chiếu trong cơ sở dữ liệu bằng 

cách sử dụng tương quan chéo được chuẩn hóa. 

 

Từ khóa - Indoor Localization, Fingerprint, Bluetooth 

Low Energy, Autoencoder. 
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