
COMBINATORIAL TESTING FOR SOFTWARE
PRODUCT LINE WITH NUMERICAL

CONSTRAINT
Do Thi Bich Ngoc*, Nguyen Quynh Chi*

*Học viện Công nghệ Bưu chính Viễn thông

Abstract—Software product lines (SPL) allow
companies to represent a set of similar products
developed from common core components. Thus,
companies can increase the range of products
efficiently. SPL is often represented by feature
models. This representation may generate a huge
number of product variants, including invalid
configurations. Thus, testing this huge number of
products is time consuming and expensive. This
paper aims to reduce invalid configuration by
extending the feature models with numerical
features and numerical constraints. Besides, the
paper proposes a combinatorial testing method
extending a feature model to reduce the number of
test cases.

Keywords—feature model, numerical constraint,

combinatorial testing, software product line, testing.

I. INTRODUCTION
Software product lines (SPLs) [15] allow

companies to efficiently increase the range of
products by representing similar products developed
from common components and with some variations
in functionality. Therefore, instead of developing a
collection of similar products individually, we can
mass-customize products by exploiting their
commonalities and maximizing reusable variation
through a product line. Thus, SPL brings benefits in
terms of higher productivity, shorter time to market
and cost reduction. SPL is often represented by a
feature model (like a tree structure) with "feature"
here is defined as a "prominent or distinctive user-
visible aspect, quality, or characteristic of a software
system or system" [8]. However, this representation
may generate a huge number of product variants,
including invalid configurations due to limitation of
logic constraints in feature models. Thus, it
challenges in testing variability throughout the whole
product line lifecycle. Therefore, the objective of
testing SPL is to specify the smallest number of test
cases in certain amount of time such that specific

coverage criteria are satisfied (e.g., all two software
feature interactions are tested) and that all test
configurations are valid (i.e., all dependencies
between features are satisfied). Given a huge number
of configurations, this manual task is extremely
tedious and unsystematic, leading often to insufficient
test coverage and redundancy in test cases.

Focusing on these problems, this paper proposed
an extending feature model by adding numerical
features and numerical constraints. The extending
feature model allows us represent SPLs and
requirements easily. Thus, the invalid configuration
will be reduced. Besides, to reduce the number of test
cases efficiently, the paper proposed how to apply a
well-known combinatorial testing method using
flattening algorithm for SPLs.

Related works
There are several works focuses on test case

generation for Software product lines or feature
models [1, 3, 4, 5, 6, 9, 10, 13]. We next surveys three
most related works.

CTE-XL tool [7, 11], based on a classification tree
method, allows users to generate combinatorial and
three-wise covering test sets, while handling
constraints among input parameters. However,
constraints are handled in a passive way, by checking
generated test configurations and possibly refuting
inconsistent combinations. This approach is
insufficient for a larger number of variables.

The second related work is the paper of Oster et.
al [13] where they also proposed a flattening
algorithm for software product line (SPL). However,
the feature model is used in [13] is the original one,
thus, it cannot represent numerical features and
numerical constraints.

In [4], the author proposed an extending feature
model with numerical and numerical constraints.
However, the feature model in [4] only restricts to
and-node and xor-node. Also, [4] aimed to find all
configurations, not combinatorial configurations.

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 10

II. MODELING SOFTWARE PRODUCT LINE
USING FEATURE MODELS
2.1 Feature models

Feature modeling has been introduced by Kang [8]
as a compact and hierarchical representation of
products in a SPL. A feature model is a hierarchically
arranged set of features. Relationships between a
parent (or compound) feature and its child features (or
sub-features) are categorized as:

• Alternative: only one sub-feature can be
selected,

• Or: one or more can be selected,
• Mandatory: features which are required,
• Optional: features which are optional.

 Besides, to capture all domain restrictions,
constraints between features (i.e., a feature requires
another feature or two features are mutually
exclusive) have been added to complete the semantics
of the models.

We call a SPL test configuration is one valid
configuration of a feature model. This configuration is
then used to form a test case. In the following, we will
simply refer to SPL test configuration as ‘‘test
configuration’’.

Valid/Invalid t-Tuple: A t-Tuple (where t is a
natural integer giving the number of features
presenting in the t-Tuple of features is said to be valid
(respectively invalid), if it is possible (respectively
impossible) to derive a product that contains the pair
(t-Tuple) while satisfying the feature model’s
constraints.

Example:

Figure 2.1 is a feature model of a SPL laptop.

We have feature types:
Mandatory: feature “HDD” must be selected in

all laptop.
• Optional: feature “Connectivity” may

be selected or not in a laptop.
• Alternative: feature “HDD” must be

selected only value of “160”, “250”, “500”
(i.e., 160GB, 250GB or 500GB)

• Or: feature “Connectivity” can be
selected as “Bluetooth” or “Wifi” or both.

We have constraints:
• Requires: if a laptop’s “HDD” is

“160” then the “Monitor” must be “GW10” .
• Excludes: there is no laptop with

“Connectivity” being “Bluetooth” and
“GraphicCard” being “Onboard”.

2.2 Numerical feature models
Feature model (FM) allows only boolean features.

However, there are several real feature models using
numerical values. FM in Figure 2.1 is the first
example. It is a part of a real feature model that
represents Dell laptops from [16]. The feature model
contains many features, in that several features are
numeric. For example, “Monitor” (e.g., 10”, 13”, 16”,
17”), “Hard Drive” (e.g., 160GB, 240GB, 500GB).
Unluckily, these features are represented by strings,
not numbers.

Another real example is the feature model for
Trek Bikes from [16]. The feature model contains 543
features in that the feature Price is the parent of
several features (e.g., 1001-2000, 2001 - 3000,..) and
the feature Size is the parent of more than 30 features
(e.g., 13”, 14.5”,...). We can see these features be
numeric but they must be represented as string.

The string presentation of numerical features will
restrict the constraints to boolean way only. It is a big
limitation seen there are several contraints are
numerical constraints (e.g. list all laptops with price <
800 and Monitor < 12.1”)

We have some observations as the followings:
• To obtain a concrete model, we need to solve

numerical constraints manually.
• Some abstract models are invalid since current

logical constraints (i.e., requires, excludes) cannot
represent the numerical constraints.

To solve these two problems we propose a new
feature model in that numeric features and complex
constraints are allowed. The type of features now can
be boolean (as original FM) or numeric (e.g., integer,
floating point...). For example, feature “HDD” in
Figure 2.1 now have values set {160, 250, 500}.
Besides, we now can also add numerical constraints
besides logical constraint “req” and “excludes”. For
examples, we can add constraint: IF feature
“HDD”<200 THEN feature “Monitor” <11.

III. COMBINATORIAL TESTING FOR
NUMERICAL FEATURE MODELS
3.1 Combinatorial testing

Combinatorial testing (CT) [2, 12, 14, 15] is a
testing technique, used to test interactions between
parameter values. The effectiveness of CT is based on
the observation that software failures are often due to
interactions between only few (t) software
parameters. A t-way testing covers all t-way
combinations of input parameters and can detect
faults caused by interactions of t or less components.
The most often used CT application in practice is
pairwise or 2-way testing. Pairwise testing requires
that every pair of values is presented at least once in a

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 11

set of test configurations. It was shown to be both
time efficient and effective for most real case studies
[12].

Combinatorial test designs support the
construction of test cases by identifying various levels
of combining input values for the assets under test.
This approach is based on a simple process:

- Identify attributes that should vary from
one test to another.

- For each factor, identify the set of possible
values that the factor may have.

Apply a combinatorial design algorithm to cover
all possible combinations of variants.
3.1 A flattening algorithm for the numerical feature
model

The feature model is a (multi levels) tree structure
while the input is required as a set of parameters and
each parameter has a set of values. It can be seen as a
simple (1 level) tree with only a root and a set of
group childrens (values). Thus, to generate the test
cases for the feature model, we need:

- Flatten the model from multi levels to 1
level (including only root and its children). In
that, the correctness is guaranted by
introducing contraints to ensure the test cases
generated by original model are as same as test
cases generated by flattening model.

- From the flattening model, generate the
corresponding paremeters and values,
constraints for combinatorial algorithms

- Apply combinatorial algorithms to
generate combinatorial test cases.

In that, flattening is the most important step.

Flattening method:
Flattening method includes two main steps:

Step 1: all features and corresponding constraints
will be lifted to the parent level. The process will stop
until when all features become the children of root.
The features then become parameters of
combinatorial algorithm.

Step 2: Assign numerical values for these
parameters.

There are several flattening rules to control the
lifting step. These rules will be applied recursively
until we obtain a feature model with two levels: root
and its children. To ensure the semantics (i.e., set of
products generated by original model is as same as set
of products generated by flattening model) we
sometimes need to add extra constraints.

Flattening rules:
We need to create rule to lift the tree based on

feature types of pair (parent, children). We consider
following rules:

Rule 1. c is Mandatory, p is one of (Mandatory,
Optional, Alternative, Or)

Because c is Mandatory, we cannot remove c’s
children from tree. We then lift group children of c
upto group children of p. To ensure the semantics, we
must change c to p in constraint formulas. Thus, we
must add c’s set of values to p’s set of values.

We have Rule 1:
- Lift group children of c up to p
- Remove c from the children list of p
- Change c to p in constraint formula
- Adding c’s set of values to p’s set of values

Example:

For the feature model in Figure 3.1, “Celltype” is
Mandatory. It has two children: Alternative group
“Integration”, “Separation”. Thus, applying Rule 1,
we lift “Integration”, “Separation” to children of
“Battery”. Then, we remove “Celltype” from the tree.

Figure 3.1 FM after applying Rule 1

Rule 2. c is Optional, p is Mandatory
Because c is Optional and p is Mandatory, we can

lift c to be child of r without losing the semantic.
We have Rule 2:

- lift c to be child of r

Example:

In Figure 3.3, because “Camera” is Optional,
“IO” is Mandatory, we can lift “Camera” to child of
“Laptop”. Figure 3.4 shows the Laptop model after
applying Rule 1, Rule 2.

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 12

Figure 3.2 FM after applying Rule 2

Rule 3. c is Optional, p is one of {Optional,
Alternative, Or}

Because c is Optional, we can lift c to be child of
r. Beside, to ensure the semantic (i.e., if c is selected,
then p must be selected), we add constraints: “c  p”.

We have Rule 3:
- lift c to be child of r

- add constraint: c  p

Example:

In Figure 3.4, because “Withled” is Optional and
is child of “Camera” (“Camera” is also Optional),
thus, applying Rule 3, we lift “Withled” to be child of
“Laptop”, we also add a constraint: IF (“Laptop” ==
“Camera”) THEN (“Laptop” == “WithLed”).

Figure 3.5 shows the result of applying Rule 3 for
Laptop model in Figure 3.4.

Figure 3.3 FM after applying Rule 3

Rule 4. (c1,…, cn) is Alternative group, p is
Mandatory

Because (c1,…, cn) is Alternative group and p is
Mandatory, we can lift (c1, …, cn) to child of r without
losing the semantic.

We have Rule 4:
- Lift (c1, …, cn) to be Alternative group of r

Example:
In Figure 3.5, “Battery” and “Monitor” are

Mandatory. “Integration”, “Separation” are
Alternative group and are children of “Battery”. Thus,
we lift “Integration”, “Separation” to children of
“Laptop”. Similarly, we lift “EE16”, “EE13”,
“GW17”, “GW13” to be children of “Laptop”, Figure
3.6 is Laptop model after applying Rule 4.

Figure 3.4 FM after applying Rule 4

Rule 5. (c1,…, cn) is Alternative group, p is one
of {Optional, Alternative, Or}

Because (c1,…, cn) is Alternative group, we can
lift (c1, …, cn) to be child of p. To ensure the
semantics, we add a new node, called “Notc”, to
Alternative group (c1, …, cn, Notc) and add constraint:
ci  p.

We have Rule 5:
- Lift (c1,…, cn) to be Alternative group chilren of

r
- Add “Notc” to Alternative group (c1,…, cn,

Notc)
- Add constraints:

c1  p;
c2  p;

…
cn  p;

not (p and notc);

c  p

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 13

Example:
In Figure 3.5, “Removeable”, “Onboard” are

Alternative group, they are children of “GraphicCard”
(Optional). Thus, we lift “Removeable”, “Onboard”
to Alternative group children of “GraphicCard”.
Then, we add “NotGraphicCard” to this Alternative
group children. Besides, we add constraints:

IF (Laptop = “Onboard”) THEN (Laptop =
“GraphicCard”;

IF (Laptop = “Removeable”) THEN (Laptop =
“GraphicCard”;

NOT (Laptop = “NotGraphicCard” AND Laptop
= “GraphicCard”);

Figure 3.6 is Laptop model after applying Rule 5.

Figure 3.5: FM after applying Rule 5

Rule 6. (c1,…,cn) is Or group, p is Mandatory
Because (c1,…, cn) is Or group and p is

Mandatory, we can lift (c1,…, cn) to be children of r.
We have Rule 6:

- Lift or group (c1,…, cn) to be children of r

Rule 7. (c1, …, cn) is Or group, p is one of
{Optional, Alternative, Or}

Because (c1, …, cn) is Or group and p is Optional,
we can lift (c1, …, cn) to be children of r. To ensure
the semantics, we add a new node, called “Notc”, to
Or group (c1, …, cn, Notc) and add constraint: ci  p.

We have Rule 7:
- Lift children (c1, …, cn) to be Or group children

of r
- Add “Notc” to Alternative group (c1, …, cn,

Notc)
- Add constraints:

c1  p;
c2  p;

…
cn  p;

not (p and notc);

Example:

In Figure 3.6, “Wifi”, “Bluetooth” are Or group of
Connectivity (Optional). Thus, we lift “Wifi”,
“Bluetooth” to be children of “Connectivity”. To
ensure semantic, we add node “NotConnectivity” to
this Or group. We add constraints:

IF (Laptop = “Wifi”) THEN (Laptop =
“Connectivity”);

IF (Laptop = “Bluetooth”) THEN (Laptop =
“Connectivity”);

NOT (Laptop = “Connectivity” AND Laptop =
“NotConnectivity”);

Figure 3.7 is Laptop model after applying Rule 7.

Figure 3.6: FM after applying Rule 7

Finally, the Laptop model after flattening
(applying 7 rules) is shown in Figure 3.8. It is a one
level tree with only one root and the list of children.

Figure 3.8: Laptop model after flattening

3.3 Generating Input for combinational testing
tools

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 14

After flattening, we obtain a model (tree) has only
one root r and set of group children pi. We now
transform it to the input format of combinational
testing tools (e.g. PICT[2], ACTS[14]). Then,
applying the corresponding tools will generate
combinational test cases of SPL. We call:

- Boolean values are {0,1}: { 0 = true, 1 =
false}

- -∞ is the smallest value that computer can
represent.

- r is the root, p is parent node, and c is p’s
child.

We have transforming rules:
1. p is mandatory:
Let <valuei> be a value of p, we have :
p: < value1 >, < value2 >,….< valuen >
2. p is optional:
Let <valuei> be a value of p, we have :
p: <value1>, <value2>,….<valuen>, <-∞>
3. (p1,…,pn) is alternative group:
Let < valueij > be value of (pi), i in [1,n], we have

:
P: < value11 >, < value12 >,….< valuenm >
4. (p1,…,pn) is or group:
Let < valueij > be value of (pi), i in [1,n], we have

:
p1: <value11>, <value12>,….<value1m>, <-∞>

…
pn: <valuen1>, <valuen2>,….<valuenm>, <-∞>
We add constraints:
NOT (([p1] = < -∞ >) AND … AND ([pn] = < -∞

>))

We also need to edit the constraints as follow:
- If p is Boolean:

 + Change p by ([p] = 0) in logic constraints
 + Change p by [p] in numerical constraints

- If p is numeric:
+ Change p by ([p] in

{<value1>,…<valuen>}) in logic contraints
+ Change p by [p] in numerical constraints

- If the constraint is a  b: replace by IF a THEN
b;

IV. EXPERIMENTS

We do experiments for several feature models.
The Table 4.1 shows the experiments with several
product lines (i.e., Volume product line, Computer
Hardware configuration product line, Computer
software product, TV product line, and Laptop
product line in Figure 2.1) based on real feature
models from [16]. “Feature model” column shows the
list of SPL; “Number of features” column shows the
number of features in the corresponding SPL;
“Number of constrains” shows the numerical
constraints appearing in the corresponding SPL;
“Number of combinatorial test cases” column shows
the number of test cases with constraints and without
constraints.

Table 4.1: Experimental results

Feature Number Number Number of

model of
features

of
constraint

s

combinatorial testing

No
constraints

Use
constraint

Volume
product line

36 2 4704 62

Computer
hardware

product line

34 2 480 29

Computer
software

product line

24 1 216 14

TV product
line

15 1 97 10

Laptop
product line

25 2 1728 32

The experiments show that:

- Applying combinatorial testing reduces a
huge number of test cases

- Extending feature model with numerical
features and constraints allows us represent more
flexible and more efficient specification.

The proposed method can be applied for real SPLs.

V. CONCLUSIONS
There are two main challenges for making SPL

testing practical. First, tests often contain invalid
product configurations that cause failures in
execution. Second, there is a lack of measurable test
coverage criteria. In this work, we provide a method
that addresses each of these limitations. The method
(1) allows automated checking for validity of test
configurations, (3) leverages combinatorial testing to
increase test coverage.

To automatically generate valid test configuration,
this paper proposed an extending feature models by
adding: (1) numerical features instead (the original
feature model allows only Boolean feature); (2)
numerical constraints (the original feature model only
allows only logical constraints with requires and
mutex). The proposed feature model allows us
represent feature models and requirements more
effectively and easily.

To obtain test coverage, the paper also proposed a
method to generate combinatorial testing
automatically by using a flattening algorithm. This
combinatorial testing method will increase test
coverage.

In future, the proposed method can be improved
and extended by adding other black-box testing
techniques (e.g., boundary testing). Another direction
is to apply the proposed method to the real world.

REFERENCES
[1] Benavides, D., Segura, S., & Ruiz-Cortés, A.-

Automated analysis of feature models 20 years later: A
literature review. Information Systems, 35(6), 2010, pp.
615-636.

[2] Czerwonka, J., Pairwise testing in the real world.
practical extensions to test case generators. Microsoft
Corporation, Software Testing Technical Articles, 2008.

[3] Do, T. B. N., Kitamura, T., Nguyen, V. T., Hatayama,
G., Sakugari, S., and Ohsaki, H. - Constructing test cases

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 15

for n-wise testing from tree-based test models, In
Proceedings of the 4th International Symposium on
Information and Communication Technologies, 2013, pp.
275–284.

[4] Do T. B. N., -Numerical feature-tree for testing, Tạp
chí khoa học và công nghệ, tập 52-số 6C, 2014 pp.57-67.

[5] Dusica M., Arnaud G., Sagar S., Aymeric H. -
Practical Pairwise Testing for Software Product Lines.
SPLC 2013, Aug 2013, Tokyo, Japan.

[6] Gilles P., Sabastian O., Sagar S., Jacques K., Benoit
B., et al. -PairwiseTesting for Software Product Lines:
Comparison of Two Approaches. Software Quality Journal,
Springer Verlag (Germany), 2012.

[7] Grochtmann, M., Wegener, J., & Grimm, K. -Test
case design using classification trees and the classification-
tree editor CTE, In Proceedings of Quality Week (Vol. 95,
p. 30), 1988.

[8] Kang, K. C., Cohen, S. G., Hess , J. A., Novak, W. E.,
and Peterson , A. S.. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-
TR-21, Carnegie-Mellon University Software Engineering
Institute, 1990.

[9] Kitamura, T., Do T. B. N., Ohsaki, H., Fang, L., and
Yatabe, S. -Test-case design by feature trees, In
Proceedings of the 4th International Symposium On
Leveraging Applications of Formal Methods, Verification
and Validation, 2012, pp. 458–473.
[10] Kitamura T., Yamada A., Hatayama G., Artho C.,

Choi E.H., Do. T.B.N, Oiwa Y., Sakuragi S., -
Combinatorial Testing for Tree-structured Test Models with
Constraints", in Proceedings of the 2015 IEEE International
Conference on Software Quality, Reliability and Security
(QRS2015), pp. 141-150 IEEE CPS, 2015.
[11] Lehmann, E., and Wegener, J. -Test case design by

means of the CTE XL, In Proceedings of the 8th European
International Conference on Software Testing, Analysis &
Review, Kopenhagen, Denmark, 2000.
[12] Richard Kuhn, Y. L. D., Raghu N. K., Practical

Combinatorial Testing. Technical Report NIST/SP-800-
142, National Institute of Standards and Technology, 2010.
[13] Oster, S., Markert, F., and Ritter, P.. Automated

incremental pairwise testing of software product lines. In
Proc. of SPLC’10, pages 196–210, 2010.
[14] ACTS, available from:

http://csrc.nist.gov/groups/SNS/acts/index.html.
[15] Software Product Lines | Overview, available from:

http://www.sei.cmu.edu/productlines/.
[16] Repository of Real Feature Models, available from:
http://www.splot-research.org

Do Thi Bich Ngoc, received the
PhD degree from Japan Advanced
Institute of Science and Technology
in 2007. Curently, she is lecture of
Faculty of Information Technology in
Posts and Telecommunications
Institute of Technology. Her
research intertests are software
testing, formal methods, program
analysis, and data mining.

Nguyen Quynh Chi, currently a
lecturer of the Faculty of Information
Technology at Posts and
Telecommunications Institute of
Technology in Vietnam. She received
a B.Sc.in Information Technology in
Hanoi University of Technology in
Vietnam, a M.Sc. in Computer
Science in University of California,
Davis, USA (UCD) and became PH.D
Candidate at UCD in 1999, 2004 and
2006, respectively. Her research
interests include machine learning,
data mining, and testing algorithms.

Số 02 & 03 (CS.01) 2017 TẠP CHÍ KHOA HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 16

http://www.splot-research.org/
http://www.splot-research.org/
http://www.splot-research.org/
http://www.splot-research.org/

