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Abstract: Radio over Fiber (RoF) stands as a cutting-
edge technology poised to revolutionize emerging wireless 
networks, especially in the context of fifth-generation 
Cloud-Radio Access Networks (C-RAN). Concurrently, 
with the pervasive integration of deep learning across 
diverse domains such as communication and data 
processing, this investigation delves into the nonlinear 
effects observed in a fronthaul interface. The exploration 
employs numerical simulations to assess the impact on two 
wireless signal channels operating in the VHF frequency 
band, utilizing continuous-phase frequency-shift keying 
(CPFSK) modulation. Moreover, this study introduces a 
novel approach to address nonlinear impairments during 
extensive data transmission. Specifically, a nonlinear 
equalizer leveraging a deep neural network (DNN) is 
proposed and implemented. The experimental phase, 
involving a transmission spanning 50 kilometers, 
underscores the effectiveness of employing a DNN with 
six hidden layers in significantly mitigating nonlinear 
distortion. This research contributes valuable insights into 
the nonlinear dynamics of fronthaul interfaces, offering a 
potential solution for enhancing the robustness of long-
distance data transmission in wireless networks. 

Keywords— RoF, CPFSK, nonlinear equalization, 
DNN. 

I. INTRODUCTION 

In contemporary society, there has been a substantial 

increase in the need for widespread access to high-speed 

information across various platforms, encompassing both 

fixed and wireless services [1],[2]. As a result, optical fiber 

technology has gained popularity as an integral component 

of information infrastructure [3]. To fulfill the demands of 

rapid data transmission in wireless networks such as 4G, 

5G, and beyond [4],[5], optical fiber-based information 

systems have been adopted to address the challenges in 

wireless communication processing [6]. This adoption is 

primarily, due to their ability to leverage the high 

bandwidth and low signal loss characteristics offered by 

optical cables [7],[8], a technology known as radio over 

fiber (RoF). Within a RoF framework, optical fiber links 

are employed to distribute Radio Frequency (RF) signals 

from a central hub to remote antenna units (RAUs) [9].The 

notable advantages of RoF technology include its minimal 

signal loss, extensive bandwidth capacity, immunity to RF 

interference, reduced power consumption, and support for 

multi-operator and multi-service functionalities. 

Therefore, RoF has become the preferred choice over 

traditional RF signal processing methods. Essentially, 

Radio Over Fiber serves as an optical link for transmitting 

modulated RF signals, facilitating the bidirectional 

transmission of both downlink and uplink RF signals 

between the Central Station (CS) and Base Station (BS). 

Key prerequisites for the RoF link architecture include 

bidirectional operations, limited transmission distance, and 

the integration of high-performance optical components 

[10]. 

Presently, the Radio over Fiber (RoF) technology serves as 

a fundamental platform for establishing an innovative 

architectural concept known as the centralized Cloud 

Radio Access Network (C-RAN) [11],[12]. This network 

architecture effectively manages centralized Baseband 

Units (BBUs) across multiple Base Stations (BSs) and 

Remote Radio Heads (RRHs) [13]. The cost-effective 

connectivity between these BBUs and RRHs is facilitated 

through a distribution network referred to as 'fronthaul.' 

RoF technology stands out as the most suitable option for 

enabling the fronthaul process, owing to its inherent 

characteristics. Notably, in certain emerging small cell 

base station systems within the C-RAN framework [14], 

the connection to RRHs is achieved through either Free-

Space Optical (FSO) [15] or RoF [16] techniques. The 

primary objective behind the implementation of RoF is to 

establish a streamlined and economical approach for 

transmitting wireless signals from Base Stations to remote 

antenna units. Several variations of RoF exist, including 

Analog RoF (A-RoF) [17],[18]. However, the nonlinear 

nature of these transformations poses a significant 
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challenge that necessitates complex compensatory 

measures [19]. To address the limitations associated with 

A-RoF, the adoption of Digital RoF (D-RoF) has emerged 

as a viable alternative [10], [20], [21]. RoF system 

combines the disadvantages of wireless transmission and 

optical transmission in its ability to transmit signals over 

radio waves using fiber optics. The relatively large 

influence on the transmission and system quality is the 

nonlinear effect. Therefore, researchers are looking for 

effective nonlinear balancing methods. 

The realm of deep learning has brought about 

transformative changes in numerous areas of research, 

such as the recognition of visual objects, speech patterns, 

and language translation services. DNNs streamline the 

process of identifying distinct attributes within 

unprocessed data [22]. The publication [23] outlines the 

conception and execution of a digital pre-distortion (DPD) 

strategy rooted in a machine learning (ML) algorithm. This 

approach has been envisioned for the upcoming sixth 

generation of mobile communications (6G) within the 

analog radio over fiber (A-RoF) system. In [24], the 

researchers suggest a channel estimation model that takes 

into account nonlinear impairments. This model relies on a 

deep neural network (DNN) and is designed to optimize 

dynamic modulation formats and guard band assignments 

for RoF broadcasting systems. Nonlinear equalizers based 

on DNNs have been created for telecommunication 

networks, aiming to counteract signal deterioration within 

diverse network structures, including passive optical 

networks (PONs) [25], optical connections [26], direct-

detection optical systems [27], [28], as well as coherent 

optical systems [29]-[31]. DNN-based strategies have 

proven to surpass traditional linear and nonlinear 

equalizers in terms of performance. 

In this article, we establish a Digital Radio over Fiber (D-

RoF) information system with two wireless channels 

utilizing two advanced phase modulation techniques, 

namely Differential Phase Shift Keying (DPSK), for the C-

RAN connection and investigate parameters related to 

nonlinearity such as refractive index n2. Subsequently, we 

examine the impact of nonlinearity on the system. We then 

propose the use of a Deep Neural Network (DNN) model 

to compensate for nonlinearity in order to enhance 

transmission quality. Realistic simulation results are 

implemented using Optisystems and Python simulation 

tools, evaluating the information performance through 

quality parameters. 

II. MODEL SYSTEM 

Fig.1 illustrates a basic Radio over Fiber (RoF) system. In 

the downlink transmission phase, the RF signal undergoes 

modulation through a diode laser, resulting in an intensity-

modulated optical signal at the Central Site (CS). These 

signals are then transmitted via an optical fiber to the Base 

Station (BS). At the BS, the signals are directly 

demodulated using an optical diode to retrieve the RF 

signal. Subsequently, they are amplified and broadcasted 

through an antenna. From the perspective of modulation 

and demodulation, RoF technology is known as Intensity 

Modulation - Direct Detection (IM-DD). The inverse 

process occurs during uplink transmission, wherein the RF 

signals from the antenna at the BS are directly modulated 

by a diode laser. The received optical signals are then 

transmitted through an optical fiber to the CS. At the CS, 

the intensity-modulated optical signals are directly 

demodulated using a Photo Detector (PD) diode to recover 

the RF signal. Following this, the signals are amplified and 

further processed. 

Fig.2 depicts the fundamental concept of a two-channel 

data Radio over Fiber (RoF) information system (CH1 and 

CH2) employing phase shift keying modulation techniques 

without requiring pre-FEC (Forward Error Correction). 

Within each channel, a pseudo-random bit sequence 

(PRBS) generates square waveforms, which are converted 

into baseband signals at a frequency of fB and a bit rate of 

Rb. These signals are subsequently modulated with an RF 

(Radio Frequency) carrier frequency of fC using a 

frequency-shift modulation technique, altering the carrier 

frequency to fC. The two channels utilize RF carrier 

frequencies, fC1=250 GHz and fC2=255 GHz, employing 

continuous phase frequency shift keying (CPFSK) as the 

modulation method. These modulation types eliminate the 

need for a combined reference signal at the receiver, as 

they operate as non-coherent modulation schemes. 

Following modulation, each channel's signal undergoes 

filtration through a bandpass filter (BPF) employing a 

Bessel filter to isolate the desired frequency band and 

eliminate unwanted frequency components. The two RF 

signals are combined at a combiner, generating two RF 

spectra corresponding to the high-frequency carrier 

frequencies, fC1 and fC2. The filtered signals from the BPFs  
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Fig.1 Application diagram of a fundamental RoF system. 
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are further processed within the combiner (Combiner). 

Subsequently, the combined output passes through an 

external modulator, transitioning the carrier frequency 

from the RF frequency to an optical frequency at f0 = 193.1 

THz, corresponding to a wavelength of λ0=1/f0= 1552.52 

nm. The external optical modulator relies on a Mach-

Zehnder Modulator (MZM), constructed based on the 

Mach-Zehnder Interferometer (MZI) principle. In this 

configuration, a continuous-wave laser source emits a 

narrow-linewidth laser spectrum at a wavelength of 

1552.52 nm using a semiconductor laser. This optical 

signal is then introduced into the MZI, either through direct 

modulation or by utilizing Bragg grating nonlinearity with 

a pre-defined wavelength of 1550 nm. The MZI structure 

involves symmetric optical path splitting or an effective 

phase shift in multiples of 2π. 

In an optical branch, the signal passes through a phase 

modulator controlled by voltage, with the voltage source 

mainly being the RF carrier signal from the output of the 

combiner. After passing through the MZM, the two 

sideband spectra of each RF signal channel, in the low and 

high-frequency sides, are
0 c B

f f f f= +  . They are filtered 

by an optical bandpass filter (OBPF) with a frequency of 

0
f f+ and a bandwidth of 1.5×Rb. Then, this optical signal 

is transmitted through a single-mode optical fiber with a 

length of L=50km, assuming a low attenuation coefficient 

of α = 0.2 dB/km. An Erbium-Doped Fiber Amplifier 

(EDFA) with a gain factor G=20 dB is used to amplify the 

optical signal to compensate for the losses. The single-

mode optical fiber is assumed to have a standard average 

chromatic dispersion parameter D = 16.75 ps/nm/km, and 

there is no need for the dispersion compensation process 

because the distance.  

At the receiver's end, an optical amplifier transmits the 

optical signal through an optical bandpass filter (OBPF) set 

at a central frequency of 193.12 THz to filter the upper 

sideband of the optical signal. Subsequently, this signal 

passes through an optical splitter, leading to an optical 

receiver employing a PIN photodiode. This optical splitter 

demodulates the filtered optical signal and directly 

converts it into a baseband signal. To eliminate high-

frequency components, a low pass filter (LPF) is applied. 

Within the signal processor, at the data signal output, 

operations such as signal restoration and nonlinear 

equalization are conducted based on the DNN model. 

Furthermore, the Signal Meter and Eye Diagram Analyzer 

tools can be utilized to monitor signal quality. The specific 

parameters defining the information system's design are 

outlined in Table 1. 

Table 1. System description parameters 

Parameter Value 

Bit Rate Rb 1Gbps 

Frequency f0 193.1 THz 

Laser output power P 0 dBm 

Length L 50 km 

Attenuation coefficient   0.2 dB/km 

Dispersion coefficient D 16.75 ps/nm/km 

Gain G 20 dB 

Radio frequency 1 250 GHz 

Radio frequency 2 255 GHz 

This study involves the construction of a DNN model (Fig. 

2) comprising seven layers, including one input layer, six 

hidden layers, and one output layer, each containing 2048 

nodes. The nonlinear function of this neural network is 

referred to as "LeakyReLU"[32]. To enhance the learning 

process, the Dropout technique is implemented, randomly 

deactivating some nodes during training at a 5% rate after 

each iteration. Within the network, the output layer 

corresponds to the specific output number of the problem, 

utilizing the term "linear" for the activation function of this 

final layer. The "Adam" optimizer and cross-entropy 

function are applied to simulate and implement the 

optimization process. The learning rate plays a crucial role 

in the learning model, initially set to 0.001 to facilitate 

learning. In cases where the model deteriorates or 

validation errors increase consistently for three 

consecutive cycles, the learning rate is reduced by 0.2 

times until it reaches a minimum of 0.00001. An early 

stopping method is employed to prevent overfitting. The 
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Fig.2. Numerical simulation setup diagram for RoF system using DNN model. 
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training process concludes when the validation error 

function ceases to decrease after a specific number of 

epochs. Lastly, the proposed model is evaluated using the 

test data output of the LPF (Low Pass Filter) unit as 

depicted in Fig.2 dataset. The criterion is examined for the 

analysis utilizing the eye-diagram specification. 

III. SIMULATION RESULTS AND DISCUSSION 

The numerical simulation was conducted using the 

commercial simulation tool OptiSystems for a two-channel 

wireless system operating with baseband digital signals at 

a speed of Rb =1 Gb/s. The RF signals underwent 

modulation at carrier frequencies of 250 GHz and 255 GHz 

before being transformed into optical signals at a 

wavelength of 1550 nm via an external optical modulator 

(MZM). Next, these filtered signals were directed through 

an optical splitter that converted the optical signals directly 

into baseband signals. To eliminate high-frequency 

components, a low-pass filter with a cut-off frequency of 

0.75 times the Bit Rate (Hz) was employed, resulting in the 

retrieval of the transmitted data. Here, we use a DNN 

model to process the signal, when the signal is affected by 

nonlinearities. The DNN model has 2 inputs and 2 outputs 

corresponding to 2 channels. 

First, we investigate the influence of nonlinear refractive 

index n2 on the bit error rate (BER). Fig.3 illustrates the 

relationship between the bit error rate and the nonlinear 

refractive index, where an increase in the nonlinear 

refractive index results in a decrease in BER. When n2 = 

32×10-21, the BER of both channels approximates 10-5. 

This indicates a significant impact of nonlinearity on the 

system's performance. Therefore, to address the nonlinear 

phenomenon when transmitting through the optical fiber 

channel, we employed a Deep Neural Network (DNN) 

model 

Fig.4 (a, b) and Fig.5 (a, b) illustrate the eye diagrams of 

the two transmission channels, respectively, before and 

after the utilization of the DNN model. In digital 

communication systems, especially optical communication 

systems, the eye pattern or eye diagram is used to visualize 

the system's performance for advanced modulation 

schemes like CPFSK. The eye pattern is a graphical 

representation that shows the digital signal sampled and 

applied to the vertical axis repeatedly with the data rate 

used to trigger horizontal scanning. From Fig.4 and Fig.5, 

it is easy to observe that channels 1 and 2 exhibit similar 

 

Fig.3 Bit error rate BER as a function of n2. 
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Fig.4. Eye diagram for channel 1: (a) with DNN model, (b) 

without DNN model. 
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Fig.5. Eye diagram for channel 2: (a) with DNN model, (b) 

without DNN model. 
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eye diagrams, but the distinction lies between Fig.4a and 

Fig.4b, as well as Fig.5a and Fig.5b. Fig.4a and Fig.5a 

represent the eye diagrams of channel CH1 and CH2 

without data processing, where their eye diagrams are 

relatively small with considerable jitter. However, after 

undergoing training in the DNN model, it is evident that 

the results shown in Fig.4b and Fig.5b depict larger, clearer 

eye diagrams with significantly reduced jitter. 

CONCLUSION 

This research article introduces an investigation into the 

proposed conFiguration of a radio over fiber (RoF) system, 

utilizing advanced modulation techniques like CPFSK, and 

employing the DNN model to achieve nonlinear 

compensation along the transmission line. Through 

numerical simulations conducted using OptiSystem 

simulation tool and Python programming language, the 

study demonstrates that the system can tolerate a nonlinear 

refractive index of up to 32×10-21 (m2/W). The simulation 

outcomes reveal that an increase in the nonlinear refractive 

index corresponds to an increase in the bit error rate (BER), 

subsequently countered by the DNN model to rebalance 

the nonlinearity and enhance system performance. This 

informational network model holds significance for 

applications involving connectivity between BBU and 

RRH units in a Next Generation Broadband Cloud Radio 

Access Network (C-RAN). 
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PHƯƠNG PHÁP CÂN BẰNG PHI TUYẾN SỬ 

DỤNG HỌC SÂU ĐỂ NÂNG CAO CHẤT LƯỢNG 

TRUYỀN DẪN ROF CỦA KẾT NỐI C-RAN HAI 

KÊNH ĐIỀU CHẾ TẦN SỐ PHA LIÊN TỤC 

 

Tóm tắt: Radio over Fiber (RoF) là một công nghệ tiên 

tiến sẵn sàng cách mạng hóa các mạng không dây mới nổi, 

đặc biệt là trong bối cảnh Mạng truy cập vô tuyến đám mây 

(C-RAN) thế hệ thứ năm. Đồng thời, với sự tích hợp sâu 

rộng của học sâu trên nhiều lĩnh vực khác nhau như truyền 

thông và xử lý dữ liệu, nghiên cứu này đi sâu vào các hiệu 

ứng phi tuyến được quan sát thấy trong giao diện truyền 

dẫn trước. Quá trình thăm dò sử dụng mô phỏng số để đánh 

giá tác động lên hai kênh tín hiệu không dây hoạt động ở 

dải tần số VHF, sử dụng phương pháp điều chế khóa dịch 

tần số pha liên tục (CPFSK). Hơn nữa, nghiên cứu này giới 

thiệu một cách tiếp cận mới để giải quyết các suy giảm phi 

tuyến trong quá trình truyền dữ liệu rộng rãi. Cụ thể, một 

bộ cân bằng phi tuyến tận dụng mạng lưới thần kinh sâu 

(DNN) được đề xuất và triển khai. Giai đoạn thử nghiệm, 

bao gồm đường truyền kéo dài 50 km, nhấn mạnh tính hiệu 

quả của việc sử dụng DNN với sáu lớp ẩn trong việc giảm 

thiểu đáng kể độ méo phi tuyến. Nghiên cứu này đóng góp 

những hiểu biết có giá trị về động lực phi tuyến của các 

giao diện truyền dẫn trước, đưa ra một giải pháp tiềm năng 

để tăng cường độ bền của việc truyền dữ liệu đường dài 

trong mạng không dây. 

Từ khóa— RoF, CPFSK, cân bằng phi tuyến, DNN. 
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