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Abstract: Orthogonal frequency division multiplexing 

(OFDM) technology, a multi-carrier digital modulation 

technology, has been widely implemented in optical 

networks thanks to the effective provision of dispersion 

compensation for optical paths. To provide bandwidth-

abundant and flexible optical path services, OFDM-based 

optical networks may need to support several modulation 

formats, i.e., BPSK, QPSK, 8-PSK, and 16-QAM, and 

deploy them adaptively. Recently, automatic modulation 

classification (AMC) has become a promising solution for 

wireless networks to identify accurately the modulation 

formats of the received OFDM signals. In this paper, we 

propose an effective AMC using deep learning (DL) for 

flexible and adaptive OFDM-based optical networks. The 

proposed DL-based AMC is able to classify four typical 

modulation schemes such as binary phase-shift keying 

(BPSK), quadrature PSK (QPSK), 8-PSK, and 16-

quadrature amplitude modulation (QAM) in dynamic 

network conditions. Numerical experiments are performed 

to verify the effectiveness of the developed solution. Our 

developed solution offers significantly high accuracy, 

95.83+%, even with a low SNR, says 4 dB, and its 

performance is improved when the SNR is enhanced. 

Keywords: Deep learning, optical network, Orthogonal 

frequency-division multiplexing, modulation format, 

modulation classification. 

I. INTRODUCTION 

Nowadays, optical transport networks have emerged as 

one of the key networking technologies for next-generation 

networks thanks to the capability of provisioning cost-

effective, dynamic, and heterogeneous bandwidth-

abundant flexible optical path services [1]–[4]. Orthogonal 

frequency division multiplexing (OFDM) technology, 

which can not only improve the spectral utilization 

efficiency but also enhance transmission performance with 

the deployment of adaptive high-order modulation formats 

per OFDM subcarrier while efficiently dealing with fiber 

dispersion compensation, has been widely adopted in next 

generation optical networks [5], [6]. Next generation 

optical networks have been expected to be reconfigurable, 

dynamic, adaptive, spectrum grid-free, and modulation 

format-free [1], [7]–[9]. Such advanced features offer a 

significant enhancement of the network flexibility, 

efficiency, and performance, more intelligent, effective, 

and sophisticated network solutions need to be developed 

[7], [10], [11]. Next-generation optical networks need to be 

equipped with intelligence to interact and adapt to network 

environments [5], [12], [13].  

One of the key intelligent network solutions is to enable 

signal receivers to identify automatically the modulated 

signals, known as automatic modulation classification 

(AMC) in order to realize efficient, adaptive, and flexible 

optical networks in which the signal modulation and 

bandwidth are determined dynamically based on the 

network states [13], [14]. Parameter synchronization 

between transceivers is a highly challenging task for 

flexible, adaptive/ automated optical systems [9], [15], 

[16]. Limitation in exchanging parameters, i.e., modulation 

format and data rate, between a transmitter and a receiver 

usually causes an inefficient usage of available resources. 

Therefore, the receiver needs to have such an intelligent 

mechanism, i.e., AMC, to detect the necessary parameters 

of the transmitter to optimally make use of resources and 

enhance the network performance. Automatic modulation 

classification enables the receiver to identify the 

modulation format of the received signal without any prior 

knowledge of the transmitted signal parameters such as 

symbol rate, channel state information, ... [14], [17]. 

Furthermore, recent advances in machine learning (ML) 

including deep learning (DL) have shown a great 

improvement in state-of-the-art results and led to a 

widespread application in many fields especially in 

communication systems. Many works introduced for deep 

learning-based AMC of OFDM systems mainly focus on 

wireless communication systems using OFDM [18]–[25]. 

Some works on DL-based AMC in optical wireless systems 

have been developed [5], [16], [26]. However, to the best 

of our knowledge, there is still a lack of study about deep 

learning solutions for modulation classification in optical 

transport networks. Different from the wireless 

environment, optical transport networks using optical fiber 

link has higher transmission quality but requires more 

accurate modulation classification. 
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In this paper, we study the automatic modulation 

classification problem in flexible OFDM-based distance-

adaptive provisioning optical networks. We propose an 

efficient automatic modulation classification solution that 

exploits deep learning to identify accurately four typical 

modulation formats including BPSK, QPSK, 8-PSK, and 

16-QAM without prior knowledge about the modulated 

signals or channel statistics for a flexible OFDM-based 

optical network. The performance of the developed DL-

based AMC solution is estimated by using numerical 

simulations. The obtained results imply that our proposed 

DL-based AMC method provides a significantly high 

accuracy even with a low SNR, more than 95.83% with the 

SNR of 4 dB. The AMC performance is also enhanced as 

the transmission quality, SNR, is better. 

II. DEVELOPED AUTOMATIC MODULATION 

CLASSIFICATION BASED ON DEEP LEARNING 

A. OFDM-based Optical Network with Deep Learning-

based Automatic Modulation Classification 

In our work, we consider an OFDM-based optical 

network that employs an automatic modulation 

classification with deep learning to detect the modulation 

format of the received signals adaptively and automatically. 

The network is assumed to adopt the distance-adaptive 

modulation mechanism with four typical modulation 

formats, i.e., BPSK, QPSK, 8 phase shift keying (8-PSK), 

and 16-QAM, of the optical signals. For simplicity, it is 

assumed that no spectrum conversion is equipped and the 

optical link loss is mainly dominated by fiber loss. 
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Fig. 1. DL-based AMC scheme for flexible OFDM optical network  
 

Figure 1 shows the system architecture of a flexible 

OFDM optical network utilizing the proposed DL-based 

AMC scheme. The developed deep learning-based 

automatic modulation classification scheme for detecting 

the modulation formats of the received signals in 

noncooperative OFDM systems. User data is converted 

into appropriate optical OFDM signals by OFDM 

modulation and transferred through optical fiber links in the 

investigated optical network. Here, note that each sub-

carrier is assumed to implement the same modulation 

mode. The deep learning model will be trained by using 

simulation data and is applied to recognize the modulation 

formats of the received OFDM signals after preprocessing.  

B. Proposed DL-based AMC Model 

The proposed deep learning-based AMC model 

consists of: 1) processing the input signal through sub-

networks, 2) extracting relevant features, and 3) making a 

classification decision based on these features. Figure 2 

illustrates our developed deep learning-based AMC 

architecture. The developed model is capable of adapting 

to signals with various characteristics by implementing 

SubNetworks for each filter size (FFT size). It leverages 

convolutional neural networks (CNNs) and fully connected 

layers to learn and classify modulation schemes 

automatically. In this approach, CNNs comprise a special 

type of layers that use convolution operations to extract 

useful representations from the input data. The automatic 

modulation classification model includes three 

components: (1) filter layers, (2) convolutional layers, and 

(3) fully connected layers. 

  

Fig. 2. Deep learning-based AMC architecture 

❖ Input data: The input to the deep learning-based AMC 

model is an OFDM signal that needs to be classified 

into one of four designated modulation formats. This 

signal is typically a received communication signal, 

and it can be in the form of complex-valued data. 

❖ SubNetworks: Deep learning model of the automatic 

modulation classification employs sub-networks to 

handle the signals with different characteristics. Each 

sub-network is responsible for processing the input 

signal with a specific filter size (FFT size) for feature 

extraction. The SubNetworks include four layers as 

follows. 

✓ First layer: input channel number is 1, the output 

channel number is 32 feature maps, kernel-size 

and padding are (2, 1) and (1, 0) respectively; 

✓ Second layer: number of input channels is 32, the 

output is 4 feature maps, kernel size is (2, 2) and 

padding is (1, 1); 

✓ MaxPooling layer: window size of 2x2, stride of 

2 and padding of (1x1) are used; 
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✓ Activation: LeakyReLU is implemented. 

❖ Feature extraction: Each sub-network, represented by 

the SubNetwork class, applies a common CNN 

architecture for feature extraction. The architecture 

includes convolutional layers, activation functions, 

and pooling layers. The input signal is processed 

through these layers to extract relevant features. The 

convolutional layers learn to identify patterns and 

characteristics in the signal. 

❖ Filtering: After initial feature extraction using the 

common CNN architecture, each sub-network applies 

additional filtering to the feature representations. The 

filtering is performed using a filter from the 

FilterBank module, which is not provided in the code 

snippet. The specific filter applied depends on the 

FFT size of the sub-network. 

❖ Concatenation of features: The outputs of all sub-

networks are concatenated into a single feature vector. 

This feature vector contains information about the 

signal's characteristics as captured by different sub-

networks. 

❖ Fully connected layers: The concatenated feature 

vector is passed through a sequence of fully connected 

layers. These layers perform additional feature 

mapping and classification. They help the model learn 

and discriminate between different modulation 

schemes. The final fully connected layer has a number 

of output nodes equal to the number of modulation 

schemes that the model aims to classify. 

❖ Activation functions: After each fully connected layer, 

the Tanh activation function is used. It introduces 

non-linearity and helps the network capture complex 

patterns in the data. 

❖ Classification: The final output of the model is a 

modulation classification prediction. It indicates the 

most likely modulation scheme used in the input 

signal. The specific modulation scheme is determined 

based on the highest activation value among the 

output nodes of the last fully connected layer. 

In fact, the developed model is trained with simulation 

data and can detect accurately four designated OFDM 

modulated signals including BPSK, QPSK, 8-phase shift 

keying (8-PSK), and 16-QAM, which are the most typical 

in optical transport networks. Details on the dataset 

generation for training and testing as well as network 

parameter initialization and optimization are explained in 

the next section.  

III. NUMERICAL SIMULATIONS 

In this section, we have simulated and evaluated the 

performance of the proposed deep learning-based AMC 

solution for a flexible optical OFDM network. Python 

framework with PyTorch library was utilized to generate 

the training and testing dataset for the simulation, build, 

and train the proposed model. To evaluate the performance 

of the developed DL-based AMC model, we employ major 

performance metrics including Accuracy, Sensitivity 

(Recall), Specificity, Precision, and F1-score. The 

Accuracy estimates the total performance of the deep 

learning model for classification, the Sensitivity and 

Specificity consider the accuracy of diagnosis for each 

modulation class, and the Precision measures the 

proportion of correctly predicted positive instances. At the 

same time, the F1-score is a geometric mean of 

sensitivity/recall and precision, this metric provides more 

meaningful results for imbalanced data sets. These 

performance metrics are determined as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                    (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                             (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (4) 

F1-score =
𝑇𝑃

𝑇𝑃+1
2(𝐹𝑃+𝐹𝑁)

                         (5) 

where TP, TN, FN, and FP respectively stand for true 

positive, true negative, false negative, and false positive. 

A. Dataset 

In our experimental simulation, the optical network 

flexibly supports distance-adaptive OFDM modulation 

assignment of established optical paths. In the network, 

optical paths can be modulated by one of four typical 

formats that are BPSK, QPSK, 8-PSK, and 16-QAM. In 

order to generate OFDM signals, user data (random bit 

sequence) is modulated by applying the OFDM technique. 

The modulated OFDM signals are transferred through an 

optical fiber channel and the channel characteristics are 

represented generally by the signal-to-ratio (SNR). For 

each modulation format, data was generated for a varying 

number of data subcarriers with FFT sizes of 256, 512, and 

1024 and with SNR values in the range of 4 dB to 16 dB in 

steps of 4 dB. Moreover, each modulation format consists 

of 1000 examples for each of the subcarrier and SNR 

values. The data is split into 85% for training and 15% for 

validation. Here, note that each sub-carrier is assumed to 

implement the same modulation mode. IQ samples are 

generated via simulation data to train the model. Table I 

summarizes major dataset parameters. 

TABLE I. SIMULATION PARAMETERS 

Parameter Value 

Modulation format BPSK, QPSK, 8-PSK and 16QAM 

FFT size 256, 512 and 1024 

Number of symbols per 

sample 
2048 

Number of samples 1000 

Training and testing 

portions 
85:15 
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B. Model Training 

The model training is performed under the training 

dataset in which SNR values are 4, 8, 12, and 16 dBs for 

the epochs of 1, 5, and 10 respectively. Epoch means the 

entire dataset is passed forward and backward through the 

neural network only once. We applied the Adam optimizer 

with initial learning rates of 10-4,10-3, 5x10-3, and 10-2 to 

figure out the best hyperparameters while the batch size is 

fixed at 1. Actually, the model architecture is independent 

of the sample number of input signals, the model is trained 

with the signal length of 2048 samples. Figures 3 and 4 

describe the training loss and the overall accuracy obtained 

with the epochs of 1, 5, and 10 when the applied learning 

rate is 10-4. For faster convergence and higher performance, 

the epoch of 5 and the learning rate of 10-4 are then selected 

for the performance estimation. 

 

Fig. 3. Training loss concerning iteration 

 

Fig. 4. Overall accuracy versus SNR with various epoch values 

C. Experimental Results 

Table II summarizes the average classification 

performance of the proposed AMC model in terms of 

accuracy, F1-score, sensitivity, specificity, and precision 

concerning the SNR. The results show that our developed 

solution can achieve significant high performance with an 

accuracy of more than 95.83% even at low SNR of 4 dB. 

The performance metrics are improved as the SNR is 

enhanced. This implies that the developed method can be 

applied effectively in various network conditions. 

TABLE II. OVERALL PERFORMANCE 

SNR 
Performance 

Accuracy F1-Score Sensitivity Specificity Precision 

4 0.9583 0.9580 0.9583 0.9583 0.9582 

8 0.9900 0.9900 0.9900 0.9900 0.9901 

12 0.9961 0.9961 0.9961 0.9961 0.9962 

16 0.9989 0.9989 0.9989 0.9989 0.9989 

 

Fig. 5. The obtained accuracy for each modulation format when the 

epoch is set at 5 

 

Fig. 6. Confusion matrix 

TABLE III. PERFORMANCE OF EACH MODULATION CLASS 

SNR Modulation 
Performance 

Accuracy F1-Score Sensitivity Specificity Precision 

4 

BPSK 1.0000 1.0000 1.0000 1.0000 1.0000 

QPSK 0.9784 0.9617 0.9784 0.9806 0.9456 

8-PSK 0.8881 0.9121 0.8881 0.9809 0.9373 

16-QAM 0.9640 0.9564 0.9640 0.9830 0.9490 

8 

BPSK 1.0000 1.0000 1.0000 1.0000 1.0000 

QPSK 0.9809 0.9904 0.9809 1.0000 1.0000 

8-PSK 0.9860 0.9792 0.9860 0.9912 0.9724 

16-QAM 0.9934 0.9902 0.9934 0.9955 0.9870 

12 

BPSK 1.0000 1.0000 1.0000 1.0000 1.0000 

QPSK 0.9977 0.9988 0.9977 1.0000 1.0000 

8-PSK 1.0000 0.9922 1.0000 0.9948 0.9845 

16-QAM 0.9872 0.9935 0.9872 1.0000 1.0000 

16 

BPSK 1.0000 1.0000 1.0000 1.0000 1.0000 

QPSK 1.0000 1.0000 1.0000 1.0000 1.0000 

8-PSK 0.9953 0.9976 0.9953 1.0000 1.0000 

16-QAM 1.0000 0.9980 1.0000 0.9985 0.9959 
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Moreover, the classification accuracy comparison of 

the developed AMC model for each modulation format is 

illustrated in Figure 5 while the attained confusion 

matrices are shown in Figure 6. It is verified that better 

SNR offers higher classification accuracy and with the 

same SNR value, the classification becomes more 

effective as simpler modulation is applied. The detailed 

classification performance of the developed solution is 

explained in Table III. The obtained results show that the 

model easily identifies BPSK modulation with the highest 

performance while 8-PSK seems to be the least efficient 

classification. The classification performance 

enhancement even becomes better with a greater received 

signal-to-noise ratio, says better transmission performance 

achieved, higher reliability and accuracy are provided. 

This means that the proposed method offers great 

performance, especially for a high-quality transmission 

environment, and is able to classify a broad range of 

modulation classes including BPSK, QPSK, 8-PSK, and 

16-QAM. Note that one of the limitations of the AMC 

using deep learning is that the model must be retrained if 

a new modulation set is deployed in the network. 

IV. CONCLUSION 

We have investigated modulation format classification 
that exploits deep learning techniques for flexible OFDM-
based optical networks. We have proposed an efficient 
deep learning-based automatic modulation classification 
solution that is data-driven completely and does not need 
prior knowledge about the modulated signals or channel 
statistics for an OFDM-based optical network with four 
typical modulation formats, i.e., BPSK, QPSK, 8-PSK, and 
16-QAM. Numerical simulations have been performed to 
verify the performance of the developed solution. The 
obtained experimental results demonstrate that the 
proposed method can be applied to automatically classify 
the modulated signals effectively without any prior 
knowledge of channel conditions. 
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GIẢI PHÁP PHÂN LOẠI ĐIỀU CHẾ TỰ ĐỘNG 

CHO MẠNG QUANG LINH HOẠT DỰA TRÊN 

OFDM 

 

Tóm tắt: Công nghệ ghép kênh phân chia tần số trực 

giao (OFDM) đang được triển khai rộng rãi trong mạng 

quang nhờ khả năng hỗ trợ bù tán sắc hiệu quả cho các 

tuyến quang. Nhằm cung cấp dịch vụ tuyến quang linh hoạt 

và băng thông cực lớn, mạng quang dựa trên kỹ thuật 

OFDM cần có khả năng hỗ trợ và triển khai một cách thích 

ứng nhiều khuôn dạng điều chế, ví dụ BPSK, QPSK, 8-PSK 

và 16-QAM. Trong thời gian gần đây, phân loại điều chế 

tự động (AMC) đang là một giải pháp đầy hứa hẹn cho các 

mạng không dây trong việc xác định chính xác các khuôn 

dạng điều chế của tín hiệu OFDM nhận được. Trong bài 

báo này, chúng tôi đề xuất một giải pháp phân loại điều chế 

tự động hiệu quả sử dụng kỹ thuật học sâu (DL) cho mạng 

quang sử dụng OFDM linh hoạt và thích ứng. AMC dựa 

trên DL được đề xuất có thể phân loại bốn khuôn dạng điều 

chế điển hình như khóa dịch pha nhị phân (BPSK), PSK 

cầu phương (QPSK), 8-PSK và điều chế 16-QAM trong các 

điều kiện mạng khác nhau. Phương pháp mô phỏng số được 

thực hiện để xác minh tính hiệu quả của giải pháp được phát 

triển và các kết quả đạt được cho thấy giải pháp AMC sử 

dụng DL được phát triển mang lại độ chính xác cao, trên 

95,83%, ngay cả với SNR thấp, tức là 4 dB, đồng thời hiệu 

năng này cũng được nâng cao khi SNR được cải thiện. 

Từ khoá: Học sâu, mạng quang, ghép kênh phân chia 

tần số trực giao, khuôn dạng điều chế, phân loại điều chế. 
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