
Duy Hang Nguyen, Duc Van Khuat, Thang Huu Nguyen, Tuan Anh Tran 

 

Abstract – The process of neural stem cell (NSC) 

differentiation into neurons is crucial for the development 

of potential cell-centered treatments for central nervous 

system disorders. However, predicting, identifying, and 

anticipating this differentiation is complex. In this study, 

we propose the implementation of a convolutional neural 

network model for the predictable recognition of NSC fate, 

utilizing single-cell brightfield images. The results 

demonstrate the model’s effectiveness in predicting NSC 

differentiation into astrocytes, neurons, and 

oligodendrocytes, achieving an accuracy rate of 91.27%, 

93.69%, and 93.06%, respectively. Moreover, our 

proposed model effectively distinguishes between various 

cell types even within the initial day of culture.  

Keywords—Neural stem cell differentiation, 

Convolution neural network, Single-cell images, Stem 

cells, Deep learning.  

I. INTRODUCTION 

Stem cells represent a specialized cell category with the 

capacity to differentiate into various distinct cell types, 

thus playing a pivotal role in the development, 

maintenance, and regeneration of tissues and organs [1, 2]. 

The abilities of stem cells to self-renew and form different 

mature cells expand the possibilities of applications in cell-

based therapies in regenerative medicine such as 

recomposing tissue, drug screening, and treatment of 

neurodegenerative diseases [3]. Besides, their therapeutic 

effects result from the secretion of trophic tissue factors, as 

well from as interactions with infiltrating cells of the 

immune system through soluble molecules and exosomes 

[4, 5]. In the adult mammalian central nervous system 

(CNS), neurogenesis occurs in two specific areas: the 

subventricular zone and the dentate gyrus found within the 

hippocampus. Within these regions, the production of 

various neural cell types is initiated from adult neural stem 

cells (NSCs). The evaluation of NSCs as a therapeutic 

approach for addressing CNS diseases and injuries has 

been ongoing for decades. Parkinson’s disease, in 

particular, has gained the greatest momentum for potential 

therapeutic benefits [5]. 

NSC can self-renew or differentiate into neurons and 

glial cells (astrocytes, oligodendrocytes, and microglia) [1, 

6]:  

• Neurons: Neurons are fundamental cells responsible for 

transmitting information in the nervous system, 

communicating through electrical and chemical 

signals, using axons to send signals and dendrites to 

receive them. Notably, neurons cannot replicate or 

regenerate once they are damaged or died [7]. 

Therefore, a widely investigated approach for treating 

neurodegenerative diseases involves either 

transplanting external NSCs or activating internal 

NSCs. Subsequently, these NSCs are induced to 

differentiate into neurons, facilitating the restoration of 

neural circuits damaged by neurological disorders [8-

10]. 

• Astrocytes: Astrocytes are a type of glial cell that 

provides crucial support to neurons. Astrocytes help 

maintain the brain’s microenvironment, regulate ion 

balance, and contribute to the blood-brain barrier [8, 

11]. Astrocytes are involved in various processes such 

as neurotransmitter recycling and repair following 

injury [12]. 

• Oligodendrocytes: Oligodendrocytes play a significant 

role in the CNS by producing myelin, a protective 

sheath around axons [13]. Myelin facilitates faster 

electrical signal transmission, crucial for proper 

nervous system function [14]. NSCs are differentiated 

into oligodendrocytes that can contribute to post-injury 

remyelination, electrically insulating neuronal axons 

for impulse propagation, and providing trophic and 

metabolic support for neurons [15]. 

• Microglia: Microglia are the immune cells of the CNS. 

Microglia monitor the brain for damage, infection, and 

foreign substances. When needed, microglia can 

become activated to protect the brain by removing 

damaged cells and pathogens [16]. 

The evaluation of potential inducers on NSC 

differentiation is a time-consuming process, typically 

taking several days. This assessment is susceptible to 
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various influencing factors, including molecular marking 

techniques, less advanced laboratory technology, and the 

proficiency of experimental personnel. Present 

methodologies may not adequately identify the factors 

influencing NSC differentiation, particularly regarding 

mechanisms that are not fully understood [17]. 

Additionally, current techniques rely on specific markers 

for each cell type, such as NeuN for neurons, GFAP for 

astrocytes, and Olig2 for oligodendrocytes, which are 

applicable only to cells at specific stages of differentiation 

[1, 18, 19]. As a result, early detection of NSC 

differentiation presents a significant challenge, hindering 

the progress of related technical advancements. There is an 

immediate need for a more efficient, precise, user-friendly, 

and resource-efficient method, one that minimizes 

subjectivity and expands our comprehension of neural 

development and differentiation.  

In recent times, artificial intelligent (AI) has witnessed 

significant advancements and has exerted a profound 

impact on various domains. Machine learning (ML), a 

subset of AI, constitutes an algorithm designed for 

recognizing patterns and categorizing vast datasets. Deep 

learning (DL), a multilayered neural network that closely 

mimics the neural circuitry of the human brain, is 

employed for acquiring insights from data. The application 

of deep learning has been extended across diverse fields 

such as autonomous driving, image recognition, drug 

discovery, and bioinformatics [20-22]. Furthermore, the 

proliferation of high-throughput technology has resulted in 

a substantial increase in biomedical data in recent decades, 

encompassing genetic sequences, protein structures, and 

medical imaging [23, 24].  

Advancements in stem cell research are increasingly 

being accelerated by the utilization of DL models. 

Integrating imaging techniques with deep neural networks 

(DNNs) has facilitated improved measurement and 

comprehension of morphological changes occurring during 

differentiation. These advancements aid in predicting the 

potential differentiation pathways of cells, annotating cells 

in an unbiased manner, and unraveling the identity of stem 

cells. DL methodologies have further been devised to 

reconstruct developmental trajectories from single-cell 

data, enhancing our understanding of stem cell fate 

determination at an unprecedented resolution. 

Additionally, these models have uncovered novel cell 

states that emerge during reprogramming processes. DL 

techniques are also expanding our ability to manipulate the 

behavior of stem cells, enabling control over their pattern 

formation and the identification of optimal culture 

conditions [25]. 

Studies have utilized DL techniques to identify various 

characteristics of cells, such as cell types, states, and 

dynamic progression, using either flow cytometry or 

microscopy images [26, 27]. Recently, there have been 

notable discoveries regarding the application of DL in 

observing and predicting physiological processes in stem 

cells. One investigation revealed that the morphology of 

haematopoietic stem cells changes during differentiation. 

DL can detect these alterations in microscopy data, 

enabling the early isolation of cells before the known 

developmental progression begins, thus predicting the 

development of haematopoietic stem cells in advance [28]. 

Another study demonstrated that machine learning can 

differentiate pluripotent stem cells from cells in the early 

stages of differentiation [29]. These findings underscore 

the potential extension of deep learning applications in the 

field of stem cell therapy. Several studies [31], [32] 

employed ResNet and VGG architectures. However, 

despite their strength and popularity, ResNet and VGG 

exhibit generality and high computational costs. Therefore, 

in this study, we propose an alternative CNN architecture. 

In our work, we propose a convolutional neural network 

(CNN)-based method for predicting the differentiation of 

NSCs into Astrocytes, Neurons, and Oligodendrocytes 

using single-cell images. The proposed network 

architecture consists of four blocks, each comprising 

distinct layers to extract and process features at various 

levels of abstraction. This method aims to enable accurate 

and efficient classification of NSC differentiations based 

on single-cell image data. The main contribution of our 

study is to apply a CNN-based method specifically 

designed to predict NSC differentiation. While previous 

studies have employed machine learning models and 

convolutional neural networks for image classification 

tasks, the specific application to predicting the 

differentiation of NSCs into distinct cell types, as pursued 

in our work, remains largely unexplored. 

The remaining portion of the paper is organized as 

follows. Section II introduces and describes the proposed 

method. Section III demonstrates and analyzes results. 

Finally, Section IV summarizes the research. 

II. METHOD 

A. Data 

The single-cell image dataset utilized in this study is 

sourced from research [30]. The dataset consists of the 

following cell types: NSCs treated with astrocyte 

differentiation medium, NSCs treated with 

oligodendrocyte differentiation medium, and NSCs treated 

with neuron differentiation medium with retinoic acid 

(RA) and sonic hedgehog (SHH). 

For the astrocyte dataset, the data is collected at three 

different time points during cell culture, specifically at 0.5 

day, 1 day, and 3 days. The oligodendrocyte dataset is 

obtained at the following time points: 1 day, 2 days, and 3 

days. Meanwhile, the neuron dataset is cultivated at 1 day, 

2 days, and 5 days. The dataset consists of single-cell 

images in brightfield. The number of images of NSCs 

differentiated into Astrocyte, Neruron and 

Oligodendrocyte is shown in tables 1, 2, and 3, 

respectively.  

The single-cell images were preprocessed before being 

fed into the convolutional neural network. We resized each 

image to 45 × 30 using the OpenCV package, then 

normalized each pixel value to be within the range  
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Table 1: The number of brightfield single-cell images of 

NSCs differentiated into Astrocyte. 

Duration            

NSc differentiation 

12 

hours 

1 day 2 days 

Astrocyte differentiation 

medium 

10,269 23,359 21,838 

Table 2: The number of brightfield single-cell images of 

NSCs differentiated into Neuron. 

Duration            

NSc differentiation 

1 day 3 days 5 days 

Neuron differentiation 

medium 

11,024 17,912 8,835 

Table 3: The number of brightfield single-cell images of 

NSCs differentiated into Oligodendrocyte. 

Duration            

NSc differentiation 

1 day 2 days 3 days 

Oligodendrocyte 

differentiation medium 

5,508 9,478 12,701 

of [0, 1]. A total of 120,924 single-cell images were split 

into 80% for use as training data to construct deep learning-

based brightfield models, and the remaining 20% were 

used for model testing. 

B. Convolutional neural network  

We utilized the Xception module of the CNN 

architecture illustrated in Fig. 1 to perform the 

classification task for predictive NSCs differentiation, 

including astrocytes, neurons, and oligodendrocytes. The 

CNN architecture includes: Input layer, Convolutional 

layers, Batch normalization, ReLU activation, Separable 

convolutions, Max pooling, Average pooling and Fully 

connected:  

(1) Convolutional layers: These layers are responsible for 

extracting various features and patterns from the input 

images, which utilize filters to perform convolution 

operations, capturing important spatial hierarchies within 

the data. 

(2) Batch normalization: Integrated after each 

convolutional layer, batch normalization standardizes the 

outputs of the previous layer. This helps stabilize the 

training process and accelerates convergence, ensuring 

efficient and stable learning. 

(3) ReLU activation: Rectified Linear Unit (ReLU) 

activation function introduces non-linearity into the 

network, allowing it to learn complex relationships and 

representations within the data. It helps the network model 

complex phenomena, leading to improved predictive 

performance. 

(4) Separable convolutions: These convolutions are 

utilized to efficiently capture spatial information within the 

data while reducing computational complexity. By 

separating the process into depthwise and pointwise 

convolutions, it enables the network to learn complex 

spatial patterns more effectively. 

(5) Max pooling and Average pooling: Max pooling layers 

downsample the feature maps, retaining the most 

significant features, while average pooling layers compute 

the average of the values within a certain kernel size. Both 

pooling operations help in reducing the spatial dimensions 

and controlling overfitting 

(6) Output layer includes a fully connected layer followed 

by a softmax activation function, providing a probability 

distribution over different cell types, thus enabling the 

model to predict the differentiation status of NSCs into 

astrocytes, neurons, or oligodendrocytes. 

C. Performance evaluation 

To evaluate performance of proposed model, we use 

Accuracy (Acc), precision (Pre), specificity (Sp) and 

Recall. The first one, Accuracy, refers to the ratio of 

correctly predicted observations to the total observations, 

providing an overall assessment of the model's correctness 

in predicting all cell types. Precision, on the other hand, 

measures the fraction of relevant instances among the 

retrieved instances, allowing us to understand how many 

Fig. 1: The CNN architecture of the proposed 

method 
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of the predicted instances are relevant to the specific cell 

types. Specificity indicates the proportion of actual 

negative cases that are correctly identified as such, 

assisting in gauging the model's effectiveness in correctly 

identifying true negatives. Recall measures the fraction of 

true positive predictions out of all actual positive instances, 

serving as an indicator of the model’s capability to detect 

all relevant cases of Astrocyte, Neuron, and 

Oligodendrocyte without missing any. The formula of this 

parameter is calculated as follows:  

TP TN
Acc

TP TN FP FN

+
=

+ + +
 

(1) 

TP
Pre

TP FP
=

+
 

(2) 

TN
Sp

FP TN
=

+
 

(3) 

TP
Recall

TP FN
=

+
 

(4) 

These parameters are normally defined for binary 

classification problems where the outcome is either 

“positive” or “negative”. As, we have three classes and 

dealing with the multi-class problem, so we computed, 

Acc, Pre, Sp and Recall, while calculating TN (True 

Negative), TP (True Positive), FP (False Positive), and FN 

(False Negative) of each class separately. Table 4 and 5, 

shows various performance measures were obtained from 

the confusion matrix. 

Table 4: Confusion matrix 

Confusion 

Matrix 

Predicted False 

Negative 

(FN) 
Class 

1 

Class 

2 

Class 

3 

 

 

Actual 

Class 

1 

A B C B+C 

Class 

2 

D E F D+F 

Class 

3 

G H I G+H 

False Positive 

(FP) 

D+G B+H C+F  

Table 5: Computing different performance measures from 

confusion matrix 

 Class 1 Class 2 Class 3 

Pre A/(A+D+G) E/(B+E+H) I/(C+F+I) 

Sp (E+I)/ 

(D+G+E+I) 

(A+I)/ 

(B+H+A+I) 

(A+E)/ 

(C+F+A+E) 

Recall A/(A+B+C) E/(D+E+F) I/(G+H+I) 

III. SIMULATION RESULTS AND DISCUSSION 

The convolutional neural network (CNN) model was 

trained and tested on a dataset of single-cell images, with 

96,740 images used for training and 21,184 images used 

for testing. Each image was resized to 45x30 pixels and 

underwent appropriate normalization and preprocessing 

before being fed into the model. The model was designed 

to classify the cells into three distinct types: Astrocytes, 

Neurons, and Oligodendrocytes. The testing results were 

documented in the confusion matrix presented in Table 6.  

Table 6 illustrates the confusion matrix derived from the 

CNN model’s performance on the testing set, with Class 1 

representing Astrocyte, Class 2 representing Neuron, and 

Class 3 representing Oligodendrocytes. The confusion 

matrix provides a detailed breakdown of the model’s 

predictive capabilities for each cell type. It outlines the 

number of instances correctly and incorrectly classified 

within each class, enabling a comprehensive evaluation of 

the CNN model’s performance. The model demonstrates 

robust performance, particularly in predicting Class 2 

(Neuron) and Class 3 (Oligodendrocyte), as evidenced by 

the high numbers of correct predictions. 

Table 6: Confusion matrix of CNN model on testing set 

(Class 1: Astrocyte, Class 2: Neuron, Class 3: 

Oligodendrocyte) 

Confusion Matrix Predicted 

Class 1 Class 2 Class 3 

 

Actual 

Class 1 10227 651 215 

Class 2 304 6750 500 

Class 3 898 0 4639 

 

Further insights into the performance of the model are 

revealed in Table 7, which presents additional performance 

metrics. The accuracy rates for predicting Astrocyte, 

Neuron, and Oligodendrocyte are 91.27%, 93.69%, and 

93.06%, respectively. Moreover, the precision, specificity, 

and recall percentages provide a deeper understanding of 

the model’s predictive capabilities for each cell type, 

indicating a strong ability to discriminate between different 

cell types. 

Table 7: The performance of predicting NSCs 

differentiation 

 Astrocyte Neuron Oligodendrocyte 

Acc (%) 91.27 93.69 93.06 

Pre (%) 89.48 91.20 86.65 

Sp (%) 90.45 95.8 95.96 

Recall (%) 92.19 89.36 83.78 

 

Besides, to evaluate the differentiation prediction of 

NSCs, we assessed the time-dependent prediction of 

collected data cells. The results are illustrated in Fig. 2, 

indicating that after 1 day of cultivation, the model detected 

the differentiation into Astrocyte, Neuron and 
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Oligodendrocyte cells with high accuracy of 93.86%, 

90.89% and 80.6%, respectively.  

Transplanting NSCs offers promising options for CNS 

recovery, but guiding their differentiation into specific cell 

types is tough. Biomarkers are commonly used to track the 

changes, but the exact process of neurogenesis, especially 

the early stages of neuron formation, remains unclear. This 

makes it challenging to identify the direction of 

differentiation early on. A reliable identification process is 

necessary to develop effective treatments for 

neurodegenerative diseases and neurological injuries, 

regardless of the treatment pathways. Though advanced 

tools aid data collection, understanding the data is difficult 

due to current device limitations. Existing methods rely 

heavily on human understanding, making it tough to 

identify small changes in cell shape or predict drug 

interactions [17]. These results of our proposed model 

illustrate the efficacy of the CNN model in accurately 

predicting the differentiation of NSCs into the specified 

cell types. The high accuracy rates and robust performance 

metrics demonstrate the model’s potential for precise 

identification and classification of cell types, thereby 

presenting promising prospects for the advancement of 

cell-based treatments and therapies for various central 

nervous system disorders. 

 
Fig. 2: Accuracy of each testing set brightfield model 

 

Table 8: Comparison of the accuracy performance of the 

proposed CNN architecture with other method for 

predicting 1 day of nscs differential cultivation.) 

Ref Astrocyte Neuron Oligodendrocyte 

[17] 95.86% 82.73% 80.59% 

Our 93.86% 90.89% 80.6% 

 

To evaluate the performance of our model in comparison 

with other research, we compare the accuracy performance 

of the proposed CNN architecture to that of the reference 

method for predicting the 1-day differential cultivation of 

NSCs, as presented in Table 8. Regarding specific cell 

types, the proposed CNN architecture achieves an accuracy 

of 93.86% for Astrocyte prediction, slightly below the 

reference method's 95.86%. However, it outperforms the 

reference with 90.89% accuracy for Neuron prediction 

compared to 82.73%. Both methods exhibit similar 

accuracy for Oligodendrocyte prediction, with the 

proposed CNN architecture at 80.6% and the reference 

method at 80.59%. Besides, our CNN architecture is 

simpler than the one presented in research [17]. These 

results suggest the competitiveness of the proposed CNN 

architecture in predicting NSCs differentiation, 

particularly excelling in Neuron prediction, while 

maintaining comparable accuracy in other cell types. 

IV. CONCLUSION 

 In summary, this paper has introduced a method 

utilizing CNN techniques to accurately predict the 

differentiation of Neural Stem Cells into Astrocytes, 

Neurons, and Oligodendrocytes, employing single-cell 

brightfield images. With its capacity to predict NSC 

differentiation within a day, the model presents a 

promising avenue for investigating the effects of various 

substances on NSCs. The results demonstrate the efficacy 

and reliability of the proposed approach, paving the way 

for improved understanding and monitoring of NSC 

differentiation dynamics. This technique holds promising 

implications for the advancement of cell-based therapies 

for various central nervous system disorders. 
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DỰ ĐOÁN SỰ BIỆT HÓA TẾ BÀO GỐC THẦN 

KINH SỬ DỤNG HÌNH ẢNH TỪNG TẾ BÀO DỰA 

TRÊN HỌC SÂU 

Tóm tắt: Quá trình phân biệt tế bào gốc thần kinh (NSC) 

thành tế bào thần kinh là quan trọng cho việc phát triển các 

phương pháp điều trị tập trung vào tế bào tiềm năng cho 

các rối loạn hệ thống thần kinh trung ương. Tuy nhiên, việc 

dự đoán, nhận diện và tiên đoán sự phân biệt này là phức 

tạp. Trong nghiên cứu này, chúng tôi đề xuất việc triển khai 

mô hình mạng nơ-ron tích chập để nhận diện có thể dự đoán 

vận mệnh của NSC, sử dụng hình ảnh đơn tế bào sáng 

trường. Kết quả chứng minh hiệu quả của mô hình trong 

dự đoán sự phân biệt NSC thành astrocytes, tế bào thần 

kinh và oligodendrocytes, đạt tỷ lệ chính xác lần lượt là 

91.27%, 93.69% và 93.06%. Hơn nữa, mô hình đề xuất của 

chúng tôi hiệu quả trong việc phân biệt giữa các loại tế bào 

khác nhau ngay cả trong ngày đầu tiên của quá trình nuôi 

cấy. 

 

Từ khóa: Biệt tế bào gốc thần kinh, Mạng nơ-ron tích 

chập, Hình ảnh đơn tế bào, Tế bào gốc, Học sâu. 
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