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Abstract: Generating tumor images on brain MRI scans 

at random locations can assist medical researchers and 

medical students in predicting the likelihood of tumors. 

However, brain MRI images with tumors are rare in 

practice, making the collection of MRI image data with 

brain tumors a time-consuming process. In this study, we 

propose the application of CycleGAN to generate T2 pulse 

sequence MRI images of the human brain from T2 Flair 

pulse sequence images of the same type and vice versa, 

thereby increasing the number of MRI images of various 

types. The returned results will be evaluated and compared 

with other studies based on FID, SSMI, and PSNR metrics. 
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I.  INTRODUCTION 

Medical imaging, a vital component for clinical 
analysis and medical interventions, provides a clear insight 
into various pathologies and hidden injuries concealed by 
the skin or bones. Magnetic Resonance Imaging (MRI) [1] 
is one of the most popular techniques used today. It is 
widely employed in hospitals and medical centers. Within 
this modality, multiple signal sequences (or modalities) can 
be obtained, each offering distinct valuable information 
regarding specific patient conditions. 

Diseases related to brain tumors pose a global 
healthcare concern, and their prevalence continues to rise 
due to adverse influences from the current social 
environment. There are numerous types of brain tumors, 
including both malignant and benign tumors. Brain tumors 
exhibit rapid growth, leading to severe consequences for 
human health, and in some cases, even fatality. In such a 
context, the prompt and early identification of brain tumors 
in patients plays a pivotal role in timely treatment, 
particularly before the tumors progress to a deteriorating 
stage. 

The acquisition of a sufficiently large number of brain 
MRI images is an important issue for machine learning 
models to improve performance and practical application. 
Brain MRI images with tumors are rare in practice, and 
collecting data with this image type is time-consuming. 
Therefore, generating additional data for training machine 
learning models, as well as segmentation or classification 
models for brain tumor detection, is necessary. The 

application of artificial intelligence and image processing 
techniques to medical image diagnosis is a widely discussed 
field, including the classification of pathologies based on 
brain MRI images. From each brain MRI scan, machine 
learning models can diagnose and identify various types of 
brain tumors and propose appropriate treatment methods. A 
more advanced technique for data augmentation in 
biomedical images is Generative Adversarial Networks 
(GAN) [2], which utilizes two convolutional neural 
networks (CNNs). The most evident application of GAN in 
medical imaging is data generation for training purposes. 
This study focuses on utilizing the CycleGAN algorithm [3] 
to extract features from specific brain regions in T2 MRI 
images and transfer these features to T2 Flair MRI images, 
aiming to create a rich dataset widely used in image 
classification or segmentation algorithms. This is an urgent 
issue, and the application of deep learning algorithms can 
assist doctors in quickly searching for brain MRI images 
with tumors, facilitating timely treatment for patients. The 
paper is organized as follows: Section 2 provides an 
overview of brain MRI images and the GAN algorithm 
models used. Section 3 presents the implementation and 
evaluation results. The conclusion and future directions are 
discussed in Section 4. 

II. METHODOLOGY 

A. Brain MRI images 

 

Figure 1. Standard MRI images have been filtered to 
remove patient names. 

The commonly used standard for MRI images today is 
DICOM, which stands for Digital Imaging and 
Communications in Medicine [4]. It is an industry standard 
system developed to meet the needs of manufacturers and 
users in connecting, storing, exchanging, and printing 
medical images. The data within MRI images includes 
demographic information, patient information, research-
specific parameters, image dimensions, and more. Patient 
information displayed includes name, gender, age, and date 
of birth. Brain MRI images encompass basic types such as 
T1W, T2W, FLAIR, and DWI. Figure 1 above is an 
example of a widely used MRI image that has been filtered 
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to remove patient-related information. In the T2W phase, 
the acquired signals have been transformed 
comprehensively, forming a uniform entity. This image is 
also useful in assessing hemorrhage and abnormalities. 
Furthermore, the role of the T2W phase is to reflect the 
homogeneity of soft tissue masses. This is particularly 
evident in the diagnosis of meningeal tumors as well as 
malignant tumors in general. Overall, MRI images are 
highly effective in diagnosing brain tumors and related 
pathologies. MRI has proven to be superior in determining 
the tumor's location and its relationship with surrounding 
structures. 

B. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) [5] are among 
the most popular and influential deep learning models in 
the field of computer vision. CNNs are utilized in various 
tasks such as image recognition, video analysis, medical 
image processing, and natural language processing. CNN 
models perform well in addressing a wide range of 
problems. 

A CNN consists of a set of fundamental layers, 
including convolutional layers, non-linear layers, pooling 
layers, and fully connected layers, which are interconnected 
in a specific order. Initially, an image passes through the 
convolutional and non-linear layers, followed by the 
pooling layer to reduce the computational complexity while 
preserving the data features. The convolutional, non-linear, 
and pooling layers can appear once or multiple times within 
the CNN. Finally, the data flows through fully connected 
layers and the softmax activation function is applied to 
compute the probability of object classification. 

C.  Generative Adversarial Networks 

Generative Adversarial Networks (GANs) were 
proposed in 2014 by Ian J. Goodfellow [2] and represent a 
new generation of frameworks for estimating models in 
adversarial contexts. GANs consist of two networks: the 
Generator network and the Discriminator network. While 
the Generator network generates new data based on real 
data, the Discriminator network is designed to differentiate 
between the data generated by the Generator and real data. 

The architecture of a GAN is depicted in Figure 2. 
There are two main components in GAN architecture. In 
the first component, the network needs a device capable of 
generating new data based on real data. In the case of image 
generation, for example, or voice synthesis, the model 
needs the ability to produce audio sequences. Similar 
principles are applied in other cases. The authors refer to 
this model as the Generator network. The second 
component is the Discriminator network. It aims to 
distinguish between fake and real data. Both networks 
compete. The Generator network tries to deceive the 
Discriminator network, while the Discriminator network 
adapts to the newly generated fake data. The information 
obtained is used to improve the Generator network and vice 
versa. 

The Discriminator network is a binary classifier that 
determines whether the input 𝑥 is real (from real data) or 
fake (from the Generator network). Typically, the output of 
the Discriminator network is a predicted value 𝑥 for the 
input 𝑖 ∈  𝑅, for example, by using a fully connected layer 
with a hidden size of 1, followed by a sigmoid activation 
function to obtain the predicted probability. 

𝐷(𝑥) =
1

1+ⅇ𝑖. 
(1) 

Assuming the real data is assigned as label 𝑦 = 1 for 
real data and 𝑦 = 0  for fake data generated by the 
Generator network, the Discriminator network will be 
trained to minimize the cross-entropy loss calculated using 
the following formula: 

𝐿𝑟 = 𝑚𝑖𝑛𝐷(−𝑦𝑙𝑜𝑔𝐷(𝑥)

− (1 − 𝑦) 𝑙𝑜𝑔(1 − 𝐷(𝑥))) 

(2) 

The Generator network, during the initialization phase 

of the data, generates random parameters 𝑧 ∈ 𝑅𝑑  from a 
fixed source, in some cases following a standard normal 
distribution 𝑧~𝑁(0,1). 𝑧 is commonly referred to as the 
latent variable. The goal of the Generator network is to 
deceive the Discriminator network by making it mistake 
the generated data 𝑥′ = 𝐺(𝑧)  for real data. This is 

equivalent to having (𝐺(𝑥)) ≈ 1. In other words, with the 

Discriminator network 𝐷, the parameters of the Generator 
network 𝐺 will be updated to maximize the cross-entropy 
loss with 𝑦 = 0 . Thus, the loss function of 𝐺  can be 
computed using the following formula: 

𝐿𝑔1 =  𝑚𝑎𝑥𝐺(−(1 − 𝑦) log (1 −  𝐷(𝐺(𝑥))) 

=  𝑚𝑎𝑥𝐺(− 𝑙𝑜𝑔 (1 −  𝐷(𝐺(𝑥))) 

(3) 

In the scenario where the Generator network performs 
exceedingly well compared to the Discriminator network, 
resulting in 𝐷(𝑥′) ≈ 1, the loss approaches zero, and the 
gradient of the parameters becomes too small to make any 
significant progress for the Discriminator network. 
Therefore, the loss will be minimized as follows: 

𝐿𝑔2  =  𝑚𝑖𝑛𝐺 (−𝑦𝑙𝑜𝑔 (𝐷(𝐺(𝑧)))) 

    =  𝑚𝑖𝑛𝐺 (− log (𝐷(𝐺(𝑧)))) 

(4) 

In this case, the Discriminator network only approves 
elements when 𝑥′ = 𝐺(𝑧) and assigns them the label 𝑦 =
 1. It can be said that 𝐷 and 𝐺 are playing a "best response" 
game with the comprehensive objective function defined 
as follows: 

𝐿𝑡 = 𝐿𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝐺(−𝐸𝑥~𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝐷(𝑥)

−   𝐸𝑧~𝑁𝑜𝑖𝑠𝑒𝑙𝑜𝑔 (1 

− 𝐷(𝐺(𝑧))) 

(5) 

D. CycleGAN 

1) General issues 

 

Figure 2. Generative Adversarial Networks GAN 

Image-to-image translation [6] is a group of issues in 
the field of computer vision that aims to learn a mapping 
between input images and output images. This problem can 
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be applied to various domains such as format conversion, 
image colorization, image enhancement, data 
augmentation for segmentation, face filtering, etc. 
Typically, to train an image-to-image translation model, a 
large number of paired input-output image samples are 
required. However, paired datasets are often scarce or 
unavailable, necessitating the development of models 
capable of learning from unpaired data. Specifically, any 
two unrelated sets of images and their shared features can 
be used and leveraged for image translation. This is known 
as the unpaired image-to-image translation problem. One 
successful approach for unpaired image-to-image 
translation is CycleGAN [3]. CycleGAN is designed based 
on Generative Adversarial Networks (GAN) [2]. The GAN 
architecture is a method for training image generation 
models consisting of two neural networks: the generator 
network and the discriminator network. The generator 
network takes a random vector from the latent space as 
input and generates new images, while the discriminator 
network takes an image as input and predicts whether it is 
real (from the dataset) or fake (generated by the generator 
network). Both models compete, where the generator is 
trained to produce images that can deceive the 
discriminator. Consequently, the discriminator is trained to 
better distinguish between real and generated images. 

 

Figure 3. CycleGAN structure 

CycleGAN is an extension of the classical GAN 
architecture, consisting of 2 Generator Networks and 2 
Discriminator Networks as illustrated in Figure 3. The first 
generator network, called 𝐺, takes an image from domain 
𝑋  as input and transforms it into domain 𝑌 . Another 
generator network, called 𝐹, is responsible for converting 
images from domain 𝑌  to domain 𝑋 . Each generator 
network has a corresponding discriminator network: 

• 𝐷𝑌: Discriminates images taken from domain 𝑌 and 
translated images 𝐺(𝑥). 

• 𝐷𝑋: Discriminates images taken from domain 𝑋 and 
translated images 𝐹(𝑦). 

During the training process, the generator network 𝐺 
tries to minimize its adversarial loss by transforming the 
image 𝐺(𝑥)(with 𝑥 being an image taken from domain 𝑋) 
to resemble the image from domain 𝑌 , while the 
discriminator network 𝐷𝑌  attempts to maximize its 
adversarial loss by distinguishing between the individual 

images 𝐺(𝑥)and the real images 𝑦  from domain 𝑌 . The 
adversarial loss function is formulated as follows: 

𝐿𝑎𝑑𝑣(𝐺, 𝐷𝑌, 𝑋, 𝑌) = 
1

𝑛
[𝑙𝑜𝑔 𝐷𝑌(𝑦)] +

1

𝑛
[𝑙𝑜𝑔 (1 − 𝐷𝑌(𝐺(𝑥)))] 

(6) 

The adversarial loss function is applied similarly to the 
generator network 𝐹  and the discriminator network is 
computed by: 

𝐿𝑎𝑑𝑣(𝐹, 𝐷𝑋, 𝑋, 𝑌) = 
1

𝑛
[𝑙𝑜𝑔 𝐷𝑋(𝑥)] +

1

𝑛
[𝑙𝑜𝑔 (1 − 𝐷𝑋(𝐹(𝑦)))] 

(7) 

With only the adversarial loss function, the model 
cannot produce satisfactory results. It would confuse the 
generator network in generating any output within the 
target domain, but not the desired output. For example, in 
the task of transforming a zebra into a horse, the generator 
could transform a zebra into a beautiful horse but without 
any characteristics related to the original zebra. 

To address this issue, the cycle consistency loss 
function has been employed. In the paper [3], the authors 
argue that if an image 𝑥  from domain 𝑋  is translated to 
domain 𝑌 and then translated back to domain 𝑋 using the 
two generators 𝐺 and 𝐹, respectively, the original image 𝑥 
should be obtained. The cycle consistency loss function in 
this case is formulated as follows: 

𝐿𝑐𝑦𝑐𝑙𝑒(𝐺, 𝐹) =
1

𝑛
∑|𝐹(𝐺(𝑥𝑖)) − 𝑥𝑖|

+ |𝐺(𝐹(𝑦𝑖)) − 𝑦𝑖| 

(8) 

From the combination of the two individual loss 
functions, the overall loss function of the CycleGAN 
network can be expressed as follows: 

𝐿 = 𝐿𝑎𝑑𝑣(𝐺, 𝐷𝑌, 𝑋, 𝑌) + 𝐿𝑎𝑑𝑣(𝐹, 𝐷𝑋, 𝑋, 𝑌)
+ λ𝐿𝑐𝑦𝑐𝑙𝑒(𝐺, 𝐹) 

(9) 

where 𝜆 is a parameter chosen to be 10 in this case to 
ensure that the weight of the adversarial loss is much 
smaller compared to the cycle consistency loss. This helps 
stabilize the consistency of the images after each training 
cycle. 

2) Optimizing ReLU activation function 

Conventional GANs commonly use the default ReLU 
activation function. In some cases, when the learning rate 
is improperly set or when gradients propagate from the 
final layers back to the initial layers, they tend to decrease 
exponentially with the number of layers in deep learning 
models. This phenomenon makes the gradients in the initial 
layers very small, leading to difficulties in convergence 
(vanishing gradient [7]). Initializing the weights according 
to a certain standard helps the model converge more easily 
and achieve better results. To address the problem of 
vanishing gradient in generating 2D medical images and 
enhance the performance of the ReLU activation function, 
this paper proposed to apply the Kaiming He initialization 
method. Kaiming He initialization [8], also known as "He 
initialization," is an initialization method for deep neural 
networks that considers the non-linearity of activation 
functions, such as ReLU. An appropriate initialization 
method avoids diminishing or amplifying the intensity of 
the input signal exponentially. 

Assuming, 

 

Figure 4. System structure 
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𝑦𝑘 = 𝑊𝑘𝑥𝑘 + 𝑏𝑘 

𝑥𝑘+1 = 𝑓(𝑦𝑘) 

(10) 

where 𝑘  is the number of layers and 𝑓  is the activation 
function. Here, 𝑦, 𝑥, and 𝑏 are column vectors, and 𝑊 is a 
matrix. This also applies to feedforward neural networks 
(NNs) as well as convolutional neural networks (CNNs) 
(since convolutional operations can be expressed as matrix 
multiplication). Each component 𝑦𝑖 of 𝑦  is computed as 
follows: 

𝑦𝑖 = 𝑊𝑖,1𝑥1 +  𝑊𝑖,2𝑥2 + 𝑊𝑖,3𝑥3 + ⋯
+ 𝑊𝑖,𝑛𝑥𝑛 + 𝑊𝑖,1𝑥1 + 𝑏𝑖  

(11) 

where 𝑛 is the size of the input matrices of the activation 
function at each layer of the model. This leads to: 

𝑉𝑎𝑟(𝑦𝑖) = 𝑛 ∗ 𝑉𝑎𝑟(𝑊𝑖,𝑗) ∗ 𝐸[𝑥𝑗
2] (12) 

where 

𝐸[𝑥𝑗
2]  𝑉𝑎𝑟(𝑥𝑗)

, as the ReLU activation function does not have a mean 
value of 0. 

The condition for using this initialization type is: 

𝑛𝑙

2
𝑉𝑎𝑟(𝑊𝑙) = 1 

(13) 

leading to  𝑊 following a Gaussian distribution centered at 

the origin with a standard deviation of √
2

𝑛𝑙 

𝑊~𝑁 (0,
2

𝑛𝑙
) 

(14) 

E. Fréchet Inception Distance 

The Inception Score (IS), proposed by Salimans et al. 
[9], is one of the popular methods to evaluate the image 
quality and diversity of GANs by utilizing a pretrained 
network (InceptionNet [10], trained on the ImageNet 
dataset [11]) to extract desired attributes from the 
generated images. In this study, the generated images are 
MRI brain images, which do not belong to any of the 
classes in the ImageNet dataset. Therefore, to assess the 
image quality and performance of the generated MRI brain 
images by CycleGAN, the Fréchet Inception Distance (FID) 
[12] has been employed. FID is one of the most used 
metrics to evaluate GANs nowadays, and a lower FID 
value is considered better. FID embeds a set of images into 
a feature space. Viewed as a continuous multivariate 
Gaussian distribution, this feature space is used to compute 
the mean and covariance of the generated and real images. 
The Fréchet distance between these two distributions is 
then used to evaluate the quality of the generated samples, 
with a lower FID indicating a smaller distance between the 
real and generated distributions. The FID score is 
calculated using the following formula: 

𝐹𝐼𝐷(𝑟, 𝑔) = ‖𝜇𝑟 − 𝜇𝑔‖
2

2
+ Tr (∑_𝑟 + ∑_𝑔

− 2√(∑_𝑟▒∑_𝑔)) 

(15) 

where ( µ𝑟, 𝑃𝑟)  and ( µ𝑔, 𝑃𝑔)  are the mean and 
covariance of the real images and the generated images, 

respectively, beside that ∑𝑟  and ∑𝑔  are covariance 

matrix of vectors [18]. The matrix 𝑇𝑟( ) is a trace matrix 
of size 𝑛 ∗ 𝑛, defined as follows:  

𝑇𝑟(𝐴) = ∑ 𝑎𝑖𝑖

𝑛

𝑖=1

 
(16) 

 

F. Structural Similarity Index (SSIM) 

 

Figure 5. The structure of the SSIM evaluation 

The Structural Similarity Index Measure (SSIM), 
proposed by Zhou Wang et al. [13], is a metric used to 
quantify the similarity between two given images. The 
SSIM metric extracts three main features from an image: 
luminance, contrast, and structure. The comparison 
between two images is based on these three features. Figure 
5 below illustrates the arrangement and flow of the 
structural similarity measurement system. The signals X and 
Y refer to the Reference Image and the Sample Image, 
respectively. This process computes the structural similarity 
index between the two given images, with values ranging 
from −1 to +1. A value of +1 indicates that the two given 
images are very similar or identical, while a value of −1 
indicates a significant difference between the two images. 
Typically, these values are adjusted to fall within the range 
[0, 1] , where the maximum values still carry the same 
meaning as the original scale. 

G. The Peak Signal-to-noise Ratio (PSNR) 

The Peak Signal-to-Noise Ratio (PSNR) is the ratio 
between the maximum power of a signal and the power of 
the noise in that signal. Engineers often use PSNR to 
measure the quality of reconstructed images that have been 
compressed. Each pixel in an image can have a varying 
color value when the image is compressed and then 
decompressed. Signals can have a wide dynamic range, so 
PSNR is commonly expressed in decibels. 

PSNR is calculated based on the Mean Squared Error 
(MSE) between two color images, where one image is 
considered an approximation of the other. MSE can be 
described as the average squared difference in pixel values 
between corresponding pixels of the two images. 

The mathematical expression of Peak Signal-to-Noise 
Ratio (PSNR) is presented as follows: 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔 (
𝑀𝐴𝑋

√𝑀𝑆𝐸
) 

(17) 

with MSE calculated according to the formula: 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑‖𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)‖2

𝑛−1

𝑜

𝑚−1

𝑜

 

(18) 

where 𝑓 represents the matrix data of the original image; 𝑔 
represents the matrix data of the generated image; 𝑚 is the 
number of rows of the image pixels and 𝑖 represents the 
index of the row; 𝑛 is the number of columns of the image 
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pixels and 𝑗 represents the index of the column; 𝑀𝐴𝑋𝑓 is 
the maximum signal value existing in the original image.

III. EXPERIMENT 

A. Data preprocessing – data cleaning 

In this study, the dataset used consisted of imaging data 
from 123 patients with brain cancer at Bach Mai Hospital, 
encompassing all age groups. Initially, the MRI images 
were stored in DICOM format. To remove patient-specific 
information from the DICOM images and convert them 

into a suitable format for machine learning, the DICOM 
format was transformed into JPEG format with a size of 
256x256 pixels. 

The images used during the training process were T2 
pulse sequence images and T2 Flair pulse sequence 
images. The signal intensity with the T2 phase of these two 
types of images correlates well not only with tissue 
homogeneity but also with cellular profiles. 

 

  

A B 

Figure 6. T2 pulse sequence (A) and T2 Flair pulse 
sequence (B) images depicting a brain tumor in the 

patient. 

  

A B 

Figure 7. Pre-processing images (A) and post-
processing images (B). 

Input T2 image 
T2 image generated from T2 

Flair 
T2 Flair input image 

T2 image generated from T2 
Flair 

    

    

    

A B C D 

Figure 8. MRI images of T2 and T2 Flair sequences (A, C); Generated images of T2 and T2 Flair sequences in different 
cases (B, D). 
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Specifically, areas with low signal intensity represent 
more fibroblastic tissue, while regions with higher signal 
intensity indicate a softer characteristic, such as a vascular 
tumor. This makes the T2 pulse sequence and T2 Flair 
pulse sequence images the most reliable methods for 
determining the presence of brain tumors in patients. Out 
of the 123 patients with brain tumors, a total of 1307 T2 
pulse sequence and T2 Flair pulse sequence images were 
selected, with 647 images displaying the T2 pulse 
sequence and 660 images displaying the T2 Flair pulse 
sequence. 

The images in the database were preprocessed with 
several steps: brightness adjustment, contrast 
enhancement, and random image flipping, which 
improved the ability to detect image features. For example, 
images will be randomly flipped at angles of 30, 60 90 
degrees and increased and decreased by 50% brightness to 
serve for data augmentation. 

B. Result 

The quantitative evaluation: 

 Figure 8 shows the results achieved by the CycleGAN 
algorithm. It can be observed that Figure 8B is generated 
from the original Figure 8C and produced by the 
CycleGAN model with the characteristics of T2 Flair 
image sequence. Similarly, Figure 8D is generated from 
the original Figure 8A. The images in each row represent 
different cases: generating non-tumor images from non-
tumor image sequences, generating tumor images from 
tumor image sequences, and generating tumor images 
from non-tumor image sequences. Therefore, during the 
model generation process, each original image can 
produce more than one new MRI image. With the initial 
dataset consisting of 660 images of each type of T2 and T2 
Flair, the model has generated a new dataset of over 800 
images for each type. In MRI images, the T2 brain is 
characterized by the presence of cerebrospinal fluid with 
the highest signal intensity, resulting in a bright white 
appearance, pale gray matter, light gray color for white 
matter, and bright color for tumor cell masses. Usually, 
abnormal brain tissue appears white. Qualitative 
assessment using visual inspection of the images indicates 
that the generated tumor brain images (Figure 8B) from 
non-tumor images (Figure 8A) exhibit similar 
characteristics to the T2 image sequence. Figure 8B clearly 
shows the distinct-white-colored abnormal cells in the T2 
tomography slice. 

During the model training process, the loss function is 
an important factor to consider whether the model 
performs well or not. The smaller the loss function, the 
more accurate the similarity between the generated images 
and the original images. Figures 9 and 10 show the loss 
functions of the CycleGAN model when using the T2 MRI 
image sequence to generate the T2 Flair image sequence 
and vice versa. It can be observed that the loss function of 
the discriminator tends to decrease over epochs (here, 100 
epochs are selected as the loss function reached a 
saturation point and could not decrease further), indicating 
that the discriminator of the GAN model becomes less 
capable of detecting the difference between the generated 
images and the original images, meaning that the 
generated images closely resemble the original images in 
terms of their characteristic. 

Table 1 displays the FID scores of the two generated 
image sets: the "Generated T2" set, which consists of MRI 
T2 images generated from the set of T2 flair images, 
compared to the original MRI images. A lower FID score 
indicates a smaller difference between the two datasets. 
With a dataset containing 660 images for each image 
sequence, the FID scores are evaluated to be reasonably 
low, indicating that the generated images can be used for 
other deep learning algorithms. 

 

Figure 9. Loss function graph of CycleGAN from T2 to 
T2 Flair image generation case 

 

Figure 10. Loss function graph of CycleGAN from T2 
Flair to T2 image generation case. 

TABLE I. Comparison of FID scores with previous 
studies in using GAN for generating 2D MRI brain 

images 

Research Algorithm FID 

Kossen, Tabea, et al., 
2021 [14] 

DCGAN 141.82 

Li, Qingyun, et al., 2020 
[15] 

TumorGAN 77.43 

This study CycleGAN 54.86 
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The compared results of FID, SSIM, and PSNR scores 
for our proposed system in this study with the most recent 
published studies are presented in Table I and Table II. The 
primary application of FID metric is to assess the quality 
and diversity of images generated by generative models, 
such as GANs. When FID scores are lower, it signifies 
higher image quality and greater diversity. Specifically, a 
lower FID score implies that the generated images closely 
match the distribution of real images. Based on these 
tables, it is evident that our proposed system achieves an 
FID score of 54.86, which is relatively good, compared to 
other research on brain MRI. It outperforms the DCGAN 
algorithm with an FID score of 55.61. Furthermore, it 
surpasses the FID score of 141.82 proposed by Kossen, 
Tabea et al., 2021 [14], and outperforms the TumorGAN 
algorithm with an FID score of 77.43 proposed by Li, 
Qingyun et al., 2020 [15].  

While using CycleGAN for image generation is not a 
novel approach, it does offer greater flexibility for 
customization compared to the method described in the 
reference paper. Due to its simplicity, CycleGAN can be 
adapted to produce improved results. However, it's crucial 
to acknowledge that due to its straightforward model, 
CycleGAN may not achieve the same level of precision as 
other specialized liver-specific methods like MEDGAN 
and IDCGAN, as discussed in this article. Nonetheless, the 
brain MRI images generated by the CycleGAN model can 
still be effectively employed in further scientific research. 

Experiments involving different deep learning models 
on data generated by CycleGAN are in the planning stages. 
The objective is to demonstrate and enhance the 
effectiveness of this method. 

IV. CONCLUSION 

The paper focuses on the application of image 
processing technologies such as the CycleGAN network to 
generate new images based on the characteristics of 
existing image datasets, thereby enriching the dataset for 
classification and segmentation tasks. After using the 
CycleGAN model, the generated MRI images of T2 and 
T2 Flair sequences achieved an FID score of 54.86. Based 
on the current results, the aim is further refinement and 
development for the model to be applied to other 
sequences such as T1, FLAIR, and DWI to increase the 
number of MRI images available for research purposes. 
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PHƯƠNG PHÁP TẠO ẢNH MRI NÃO BỘ DỰA 

TRÊN CYCLEGAN CẢI TIẾN 

Tóm tắt: Việc tạo hình ảnh khối u trên hình ảnh MRI 

não tại vị trí ngẫu nhiên có thể giúp các nhà nghiên cứu y 

tế và sinh viên y học dự đoán khả năng có khối u. Tuy 

nhiên, hình ảnh MRI với khối u não là hiếm gặp trong thực 

tế, do đó việc thu thập dữ liệu hình ảnh MRI với khối u 

não mất rất nhiều thời gian. Trong nghiên cứu này, chúng 

tôi đề xuất áp dụng CycleGAN để tạo ra hình ảnh MRI 

chuỗi xung T2 của não người từ hình ảnh chuỗi xung xoá 

dịch T2 Flair cùng loại và ngược lại, từ đó tăng số lượng 

hình ảnh MRI các loại. Kết quả trả về sẽ được đánh giá và 

so sánh với các nghiên cứu khác dựa trên các thông số FID, 

SSMI và PSNR. 

Từ khóa: Khối u não, Trí tuệ nhân tạo, Mạng nơ-ron 

tích chập, Học máy,  Mạng đối nghịch tạo sinh... 
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