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Abstract—This study proposes a new approach for 

diagnosing pediatric sepsis that utilizes a convolutional 

neural network and a combination of 7 immune-related 

genes (IRGs), including CD24, TTK, PRG2, CLEC7A, 

CCL3, TNFAIP3, and CCRL2. A three-layer gene 

selection process involves a sequential procedure that 

combines differential gene expression analysis, selection 

of immune-related genes, and gene score calculation using 

the F-score algorithm. This process identifies the most 

informative differentially expressed genes, followed by the 

utilization of a deep learning model to determine the 

optimal gene combination. The performance of the 

proposed algorithm is evaluated using a 3-fold cross-

validation procedure with deep learning models. The 

results show that the selected gene combinations achieve 

an accuracy of 91.92% and an area under the ROC curve 

of 87.86%, indicating that the proposed algorithm is 

reliable for predicting pediatric sepsis mortality. 

Additionally, the identification of a signature consisting of 

7 IRGs associated with pediatric sepsis mortality has the 

potential to aid in the development of dependable 

diagnostic and prognostic biomarkers for sepsis. 

 

Keywords— Pediatric sepsis, Differential expression 

gene, Immune-related genes, Gene selection, Deep 

learning.  

I. INTRODUCTION 

Sepsis is characterized by elevated rates of morbidity 

and mortality, stemming from an imbalanced inflammatory 

response of the host to infection [1]. Septic shock is a 

severe form of sepsis in which the blood pressure drops to 

dangerously low levels, causing organ failure and 

potentially leading to death [2]. Pediatric sepsis is a critical 

condition that occurs when the body’s immune system 

responds excessively to an infection, leading to organ 

failure and a life-threatening condition [3]. It is a major 

global public health problem and one of the leading causes  

 

 

 

of death in critically ill children admitted to the intensive 

care unit (ICU) [4]. Despite the significant progress made 

in the diagnosis and treatment of sepsis, the number of 

cases is still increasing [5], [6]. Besides,there have been 

efforts to stratify the risk of sepsis, particularly in children, 

it remains a challenge due to the considerable variability 

among patients and the inadequate definitions of sepsis in  

pediatric populations that currently exist [7]. This 

highlights the urgent need to gain a deeper understanding. 

Ongoing research efforts are necessary to identify more 

sensitive and specific targets for the diagnosis and 

treatment of sepsis, particularly pediatric sepsis and septic 

shock, as the complexities of this condition require a 

comprehensive approach to ensure effective management 

and prevention. Early warning and accurate prediction on 

pediatric sepsis and septic shock provide opportunities for 

physicians to take preventative measures to alleviate its 

devastating consequences. 

The molecular-level diagnosis and prognostic detection 

of diseases has become a prevailing trend, and researchers 

studying sepsis have also widely adopted this approach [8]. 

Recently advancement of multi-omics sequencing 

technologies has resulted in an increase in the number of 

genetic biomarkers available. To better understand the 

genes, RNA, and proteins involved, researchers are 

increasingly analyzing and testing single or combined 

biomarkers. Various strategies have been employed to 

uncover these biomarkers, such as massspectrometry, 

protein arrays, and gene-expression profiling. It has also 

been observed that the development of pediatric septic 

shock involves the participation of multiple genes and 

immune system-related pathways [9]. Differential 

expression (DE) analysis of transcriptomic data allows for 

the study of gene expression changes associated with 

specific biological conditions across the entire genome. 

Typically, this analysis generates a large list of genes that 

exhibit differential expression between two or more 

groups. These identified differential expression genes 

(DEGs) can be subject to further downstream analysis to 

gain additional biological insights, such as identifying 

enriched functional pathways or gene ontologies. 

Additionally, DEGs are considered as candidate 

biomarkers, and a smaller subset of DEGs may be 

identified as potential biomarkers using either data-driven 

or biological knowledge-based approaches [9], [10]. 

Immune-related genes (IRGs) are a group of genes that 
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play important roles in the immune system’s response to 

infection, inflammation, and other immunerelated 

processes, have been used as biomarker for diagnosis and 

prognostic signatures for various types of cancer, 

exhibiting high sensitivity and specificity [11]. Recent 

studies have shown that using IRGs to diagnose sepsis can 

significantly improve the accuracy of the diagnostic 

method [5], [11]. 

Gene selection is crucial for reducing data 

dimensionality and improving prediction efficiency. The 

authors of studies in[10], [12] utilized a two-layer gene 

selection approach that combined DEGs analysis with 

feature selection using machine learning techniques to 

identify potential genes and enhance prediction accuracy 

with a limited gene dataset. In [10], 10 genes were selected, 

resulting in an accuracy of 87.06% and an AUC of 89%. In 

[12], 9 genes were selected, resulting in an accuracy of 

91.79% and an AUC of 85.66%. In other studies, 

researchers utilized IRGs and machine learning (ML) 

methods for gene selection, as seen in studies such as [5], 

[11]. In our work, we propose a novel three-layer gene 

selection approach that integrates DEGs, IRGs, and F-

score based on deep learning (DL) to identify the optimal 

gene combination, and therefore enhance the performance 

of mortality prediction in pediatric sepsis. 

ML has become an increasingly popular method for 

detecting and predicting biomarkers in recent years [13]. A 

study conducted previously demonstrated that ML 

algorithms can accurately predict the onset of sepsis in an 

ICU patient between 4-12 hours prior to clinical 

recognition based on medical data [14]. Additionally, 

various ML techniques have been utilized in other studies 

to predict patient outcomes in cases of sepsis [10], [12], 

[15]. Although, DL algorithms have demonstrated 

significant success in healthcare, such as biomedical signal 

processing. However, the application of DL in the field of 

infection detection, particularly sepsis diagnosis, has not 

been extensively explored. This may be due to the complex 

and multifactorial nature of sepsis, which involves various 

physiological and molecular processes. Nevertheless, 

recent studies [16], [17] have shown the potential of DL 

models in predicting sepsis onset and identifying sepsis 

biomarkers using various types of data, such as clinical, 

genomics, and metabolomics data. These studies suggest 

that DL algorithms have promising applications in the field 

of sepsis diagnosis and management. Further research is 

needed to fully understand the potential and limitations of 

DL in this area and to develop more accurate and effective 

models for sepsis diagnosis and treatment. Therefore, the 

aim of this study is to identify diagnostic biomarkers genes 

for sepsis using DL. 

In our work, a novel diagnostic algorithm for pediatric 

sepsis that combines 7 IRGs using convolution neural 

network (CNN) algorithm is introduced. To identify the 

most relevant gene combinations, we use three-layer gene 

selection. Firstly we employ a sequential gene selection 

procedure, also known as DEGs, which identifies a subset 

of genes that are most informative for sepsis diagnosis; 

then these genes are then filtered out for IRGs; finally the 

most potential IRG combinations are selected based on DL 

models to validate the gene combinations ranked by F-

score algorithm. Besides, the performance of the DL model 

using the IRGs is estimated through the 3-fold CV method 

on the validation set to increase reliability, making the 

results more reliable for practical use in clinic 

environments. The main contribution of this work: 

• A novel three-layer gene selection selection, including 

DEGs, IRGs, and DL models based on F-score 

algorithm to identify optimal the number of genes, and 

therefore enhance the performance of prediction 

pediatric sepsis. 

• Proposing a simple algorithm model and high predictive 

efficiency for the mortality of pediatric sepsis. 

• Proposing a subset of genes associated immune to 

diagnosis pediatric sepsis mortality. 

II. METHOD 

The proposed method includes four steps shown in Fig. 

1. The first step is to preprocess the gene dataset to 

compute the gene expression levels and perform 

differential expression analysis. After that the dataset is 

split into two equal parts, 50% for training and 50% for 

testing. In the second stage, we identify potential 

biomarker genes through DEGs analysis and subsequently 

filter the obtained gene list with immune-related genes. 

The gene ranking process is implemented using the F-score 

algorithm to identify the most effective gene combinations 

for improving the diagnosis of pediatric sepsis. A variety 

of gene combinations are generated and utilized as input 

for the DL models in order to assess their performance. 

Next, the third step is model validation and gene validation 

to identify a the best gene combination and optimal DL 

models to achieve the high accuracy of the diagnosis of 

pediatric sepsis. In the last step, the selected gene 

combination along with the optimal CNN and LSTM 

models are then subjected to performance evaluation on the 

testing data. The aim is to compare the performance of the 

models and determine the best DL model that can be used 

to propose an algorithm for diagnosing pediatric sepsis. 

 

A. Data 

The dataset we use in our work is GSE66099, which is 

publicly available and sourced from six other GEO 

databases [18]. The dataset included 276 unique patients, 

including 47 healthy controls, 18 sepsis patients, 181 septic 

shock patients, and 30 patients with systemic inflammatory 

response syndrome (SIRS). The dataset consists of patients 

who were included in six additional GEO datasets that 

were previously published by Hector Wong [19] and the 

Genomics of Pediatric SIRS and Septic Shock 

Investigators. This comprehensive dataset comprises all 

distinct patients from GSE4607, GSE8121, GSE9692, 

GSE13904, GSE26378, and GSE26440. 

In this paper, we only use the dataset involving 

pediatric patients classified as sepsis and septic shock. The 

dataset contains expression profiles of about 10,596 genes 

from 199 children. Among the 199 pediatric patients, 28 

did not survive within 24 hours of admission to the ICU. 

All samples were saved in CEL format and renormalized 
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using the R package affy’s gcRMA method [20]. We 

downloaded probe-to-gene files from GEO and calculated 

the gene expression level by taking the mean. It is 

noteworthy that the number of patients is relatively small, 

which results in equal amount of training and testing 

datasets to ensure sufficient number of survivals and non-

survivals in both datasets. 

 

 
Figure 1. Method diagram 

 

B. Identification differential expression genes 

The gene dataset uses DE analysis, where the genes are 

tested individually for expression differences between 

conditions. The fold change is calculated and used as a 

crucial factor to distinguish between survivors and 

nonsurvivors. Specifically, non-surviving samples 

exhibited higher expression levels of up-regulated genes 

than surviving samples. To implement DEG analysis in this 

study, we utilized the R package as the simulation tool and 

employed the ’limma’ package of R with the 

BenjaminiHochberg (BH) correction method [21] to 

identify DEGs. Additionally, the screening criteria for 

DEGs were adjusted P-value ≤ 0.05 and log fold change 

(LogFC) ≥ 1.5 to select representative DEGs for pediatric 

sepsis patients who either survived or did not survive [10]. 

The selection of a P-value threshold of 0.05 and a LogFC 

threshold of 1.5 in the identification of DEGs is grounded 

in statistical and biological relevance. It represents the 

probability of obtaining observed results, or more extreme 

results, under the null hypothesis. The logFC threshold of 

1.5, on the other hand, reflects a practical determination of 

biological significance. This threshold ensures that only 

genes with a substantial magnitude of expression change 

are considered, aiding in the focus on alterations that are 

likely to be biologically meaningful. 

C. Immune-related genes 

IRGs are considered as potential biomarkers due to the 

association of sepsis with the immune system. These genes 

have been used in numerous studies related to pathogen 

infection and host response. A total of 770 IRGs were 

gathered from the nanoString database 

(www.nanoString.com), which has been utilized in 

numerous studies involving pathogen infection and the 

host response. Following the completion of the DEG 

analysis, we compared the genes identified as DEGs with 

this gene database of 770 IRGs to select immune genes. 

 

D. Gene selection method 

The selection of genes crucial for realizing biomarker 

potential in diagnosing sepsis poses a challenge. Therefore, 

we propose a novel three-layer gene selection approach, 

utilizing a sequential gene selection method to identify 

informative genes for sepsis diagnosis. This step aims to 

identify a set of genes related to the outcome of interest and 

identify small sets of genes suitable for diagnostic purposes 

in clinical practice. The three-layer gene selection includes 

DEGs to identify a subset of genes that are most 

informative for sepsis diagnosis, IRGs and gene validation 

based on DL model to validate the the gene combinations 

ranked by the Fscore algorithm. Also known as the Fisher 

score, this algorithm evaluates individual features in a 

dataset, measuring of the discriminatory power of each 

feature in distinguishing between two classes. The 

calculation involves both between-class and within-class 

variance. 

 

E. Deep learning models 

In order to optimize the LSTM and CNN models, their 

parameter structures are fine-tuned on the training set. 

Essential for avoiding overfitting and identifying the best 

models, hyperparameter tuning is carried out through an 

iterative process that optimizes external configuration 

settings, or hyperparameters. These hyperparameters, 

distinct from parameters learned during training, 

significantly impact a model’s effectiveness. For CNNs, 

hyperparameters include the learning rate, batch size, and 

architecture-specific parameters such as the number of 

convolutional layers, filter sizes, and pooling strategies. In 

the case of LSTMs, tuning focuses on parameters like the 

learning rate, batch size, and LSTM-specific parameters 

such as the number of hidden units, the number of layers, 

and the dropout rate for regularization. The structure and 

parameters of CNN and LSTM models are shown in Table 

1 and 2. Furthermore, the performance of the selected 

model is assessed on the validation set. To determine the 

optimal values for the model parameters, a combination of 

grid search and the 3-folds CV method is utilized in this 

study. 

 

Convolutional Neural Networks: The neurons are a 

crucial component of the CNN, as they form the layers that 

make up the network. These neurons are arranged in three 

dimensions: the height and width of the input (known as 

the spatial dimensionality), as well as the depth. The CNN 

is composed of several layers, including the input layer, 

convolutional layer, rectified linear unit layer, pooling 

layer, fully connected layers, and output layer. 
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Table 1: The structure of CNN and LSTM models 

 

Table 2: Parameters of CNN and LSTM models 

 

1) Input layer: The preprocessed gene data is arranged 

as the input, which is then fed into the CNN. 

2) Convolutional layer: It applies a set of filters, also 

known as kernels, to the input data. The filters convolve 

over the input data by performing a dot product operation 

between the filter weights and the corresponding input. The 

result of this computation determines the output of the 

neurons. 

3) Rectified linear unit (ReLU): This is an activation 

function that is commonly used to transform the output of 

the previous layer. It is designed to be a more efficient 

activation function than the sigmoid function. 

4) Pooling layer: In a CNN, the pooling layer is 

responsible for down-sampling the input data along its 

spatial dimensionality, thereby reducing the number of 

parameters in the activation. It accomplishes this by 

applying a fixed function over a sliding window of the 

input, such as taking the maximum or average value of the 

window. This results in a smaller output size compared to 

the input size, making it easier to process by subsequent 

layers. 

5) Fully-connected layer: A fully-connected layer aims 

to produce class scores based on the activation obtained 

from the previous layer. This layer is used for classification 

purposes. To improve performance, ReLu can be added 

between the fully-connected layers. 

6) Output layer: The output layer of the CNN includes 

both the Softmax and classification layers in which the 

former represents the probability distribution of a 

particular class assigned by the corresponding unit in 

classification and the later identifies the output as survival 

or non-survival, respectively. 

 

Long Short-Term Memory: The problem of vanishing 

gradients, which occurs during the learning of long-term 

dependencies, even when the time lags are quite long, is a 

major issue. However, the LSTM model is an effective 

solution to address this problem. To prevent this issue, a 

constant error carousel is used that keeps the error signal 

within each cell of the unit. The LSTM architecture 

consists of a series of recurrently connected sub-networks, 

called memory blocks, which maintain state over time and 

regulate the flow of information through non-linear gating 

units. The output of the block is connected back to the input 

of the block, as well as to all of the gates. 

 

F. Performance evaluation 

The DL models’ diagnosis performance using various 

gene combinations is evaluated based on different 

measured parameters, including accuracy (Acc), sensitivity 

(Se), specificity (Sp), Matthews correlation coefficient 

(Mcc), and area under the curve (AUC). The Acc 

parameter indicates the number of correctly identified 

pediatric patients. Se and Sp measure the number of 

correctly detected deaths and survivals due to sepsis, 

respectively. The Mcc measures the discrepancy between 

predicted and actual patients. Additionally, the AUC 

parameter evaluates the DL classifier’s ability to 

differentiate between pediatric deaths and survivals caused 

by sepsis. 

III. SIMULATION RESULTS 

A. Differentially expressed genes, Immune-related gene 

and Gene ranking 

 
Figure 2. The scatter plot of p-value and log fold change 

for 108 DEGs 

 

By applying a threshold of absolute log fold change 

LogFC 1.5 and p-value 0.05, 108 genes were identified as 

DEGs from 10596 genes of septic pediatric patients who 

survived and those who did not shown in Fig. 2. From 108 

genes we matched with 770 IRGs, we got 12 genes, 

namely: CD24, TTK, PRG2, CLEC7A, CCL3, TNFAIP3, 

Model Layer Number 

CNN 

Convolutional layer 6 

Relu 6 

Max pooling 4 

Fully connected 2 

Softmax 1 

LSTM 

LSTM layer 3 

Batch Normalization 3 

Drop out 1 

Fully connected 2 

Softmax 1 

Model Parameter Value 

CNN, 

LSTM 

Learning rate 0.001 

Epoch 200 

Batchsize 100 

Optimizer sgdm 

Momentum 0.95 
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CCRL2, TFRC, STAT4, CCL20, CCR2, EBI3 that are 

related to the immune system. 

The dataset consists of 12 genes obtained from IRGs 

that are normalized and preprocessed. The F-score 

algorithm is used to score the genes in the training dataset, 

and the corresponding score values are shown in Fig. 3. 

The genes are ranked in descending order according to 

their score values. A total of 12 gene combinations are 

generated, each combination consisting of a variable 

number of genes ranging from 1 to 12. The first gene 

combination is created from the gene with the highest 

score. In the second gene combination includes genes that 

are arranged with the first ranked score and the second 

ranked gene. Similarly to the 12th gene combination, there 

are 12 genes. 

 

 
 

Figure 3. 12 immune-related gene ranked by F-score 

algorithm. 

B. Gene validation and Model validation 

In this stage, we trained and validated the models using 

the entire dataset via 3-fold CV. Because the gene dataset 

is relatively small, we validate the gene combinations using 

the entire dataset. The dataset is randomly divided into 3 

folds, with 2 folds used for training the DL models and the 

remaining fold use for testing. This 3-fold CV process is 

repeated 3 times to complete a comprehensive procedure. 

The mean diagnostic performance of the DL models is then 

calculated for analysis and comparison. The selection of 

the optimal gene combinations is based on the highest 

performance of the corresponding DL models, which use 

these gene combinations as input for diagnosing pediatric 

sepsis. CNN and LSTM are employed to assess the 

diagnostic performance of various gene combinations in 

pediatric sepsis. we use different gene combinations in 3-

fold CV on both CNN and LSTM models. The 

corresponding gene combination is used to evaluate the 

performance of each DL algorithm, and the metric score is 

calculated and analyzed. Specifically, each DL model is 

evaluated using 12 gene combinations. Based on the results 

of the DL models, we select the algorithm with the highest 

metric mean score, along with its corresponding gene 

combination, as the most effective algorithm and feature 

combination for the diagnosis model. Table 3 shows the 

highest validation performance results of the individual DL 

models. In the two DL models, the CNN model achieved 

the highest mean validation performance score using a 

combination of 7 genes, including CD24, TTK, PRG2, 

CLEC7A, CCL3, TNFAIP3, CCRL2 which is a relatively 

small number of genes. 

Table 3: The highest validation performance of the DL models 

on the entire dataset 

DL 

model 

Number  

of genes 

Acc 

(%) 

Se 

(%) 

Sp 

(%) 

Mcc 

(%) 

AUC 

(%) 

CNN 7 91.92 33.33 96.72 46.67 87.86 

LSTM 7 83.84 20 89.07 12.38 61.31 

Table 4: The performance of diagnosis pediatric sepsis on the 

testing set using DL models 

DL model Acc (%) Se (%) Sp (%) Mcc (%) AUC (%) 

CNN 91.92 33.33 96.72 46.67 87.86 

LSTM 83.84 20 89.07 12.38 61.31 

 
Table 5: Confusion matrix of CNN/LSTM models on testing set 

based on gene combinations 

 
Predicted 

Actual 

Survival Mortality 

Survival 81/82 4/3 

Mortality 5/12 9/2 

 

C. Model testing 

The proposed algorithm for diagnosing pediatric sepsis 

using DEGs and IRGs involves training and testing 

different DL models with the optimal gene combinations. 

The performance of each model is evaluated on the training 

and testing set using the selected gene combinations. The 

algorithm identifies the final gene combination and 

corresponding DL model that exhibits the highest 

diagnosis performance on the testing set. This approach 

allows for the development of an effective and accurate 

diagnosis method for pediatric sepsis using differential 

expression genes and DL models.The performance of DL 

models on the testing set is shown on Table 4, 5, where 

Table 4 shows the testing results of those models using 

different gene combinations and Table 5 shows the 

confusion matrix of different DL models on the testing set 

using the selected gene combinations. 

IV. DISCUSSION 

In this study, we propose an efficient three-layer gene 

selection method for selecting potential biomarkers to 

increase the accuracy of predicting mortality in pediatric 

septic patients. Indeed, in papers [10], [12], [5], [11], [22], 

by applying two-layer gene selection, they selected a small 

set of genes with potential to increase the efficiency of 

predicting the mortality rate of sepsis. In our work, a three-

layer gene selection is proposed including DEGs, IRGs and 

gene validation based on DL models to valid gene 

combinations ranked by F-score algorithm. 

DE analysis is a common method used to examine gene 

expression profiles and understand the underlying 

biological mechanisms of complex diseases. The analysis 

of gene expression data can be beneficial for predicting 

sepsis in pediatric patients. This type of data offers a wealth 
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of information that can be utilized to identify significant 

biomarkers and genetic pathways linked to sepsis. Gene 

expression profiles are typically highdimensional, with 

tens of thousands of genes and high correlations between 

them. Therefore, DE analysis tools often identify hundreds 

of highly correlated genes. In this work, from an original 

gene dataset of 10,596 genes, a subset of 108 genes is the 

outcome of DEGs analysis. The DE analysis is used to 

eliminate irrelevant genes, which contribute insignificantly 

to the diagnosis of pediatric sepsis. Molecular biomarkers 

have been recognized as noninvasive clinical tools that can 

provide objective predictions or evaluations of disease 

status and progression. The immune system’s regulation of 

response and function has been shown to be crucial in the 

development and advancement of sepsis [11]. Study [23] 

demonstrated that certain genes linked with innate immune 

response could be utilized to predict the prognosis and 

diagnosis of children with clinical sepsis and were found to 

have promising clinical efficacy. Moreover, sepsis is a 

disease closely associated with the immune system of 

patients, so IRGs are being considered as potential 

biomarkers. Therefore, in our work we filter out 12 IRGs 

(namely CD24, TTK, PRG2, CLEC7A, CCL3, TNFAIP3, 

CCRL2, TFRC, STAT4, CCL20, CCR2, EBI3) from 108 

DEGs. To select the most potential IRGs, we used a set of 

DL models to evaluate the genomes that were ranked by F-

score algorithm and combined into 12 combined gene sets. 

Using LSTM and CNN to examine this data and 

recognize crucial features can be used to diagnose sepsis. 

LSTM is capable of capturing the temporal relationships in 

gene expression data, which is usually recorded as a time 

series with regular measurements over time. This makes 

LSTM well-suited to modeling the changes in gene 

expression over time that may indicate sepsis. On the other 

hand, CNN is suitable for identifying significant features 

in high-dimensional data, such as gene expression data. 

With the use of convolutional layers, CNN can extract 

patterns and motifs that are indicative of sepsis. Our study 

used both LSTM and CNN models to diagnose pediatric 

sepsis, and the results in Table 3,4, and 5 demonstrate this 

approach. Obviously, the CNN model outperforms the 

LSTM model in terms of diagnosis performance on the 

entire gene dataset and on the testing set. Because the 

convolutional layers of CNNs autonomously learn relevant 

patterns and relationships within the DEG, providing a 

powerful mechanism for discerning key genetic signatures 

associated with sepsis. Additionally, the parameter sharing 

property of CNNs allows them to efficiently identify 

crucial features, contributing to improved generalization 

on genomic datasets. While LSTMs are proficient in 

modeling sequential dependencies, CNNs’ ability to 

exploit spatial structures in gene data makes them 

particularly well-suited for enhancing the accuracy and 

interpretability of sepsis classification based on DEG. 

Therefore, we propose an effective simple algorithm that 

is the CNN model in combination with 7 IRGs selected 

from three-layer gene selection, including CD24, TTK, 

PRG2, CLEC7A, CCL3, TNFAIP3 and CCRL2, for 

pediatric sepsis diagnosis. By using the 3-fold CV 

procedure in both gene selection and model validation, this 

makes our results more reliable. A comparison between the 

proposed algorithm and an existing method using two-

layer gene selection and ML models with a similar 

GSE66099 dataset is presented in Table 6. 

Table 6: Validation and testing performance comparison of the 

proposed algorithm to existing works using the same GSE6609 

data set 

V. CONCLUSIONS 

Our study proposes a novel approach for predicting 

mortality in pediatric sepsis. This approach involves 

utilizing a combination of a CNN model and a set of 7 IRGs 

signature, specifically CD24, TTK, PRG2, CLEC7A, 

CCL3, TNFAIP3, and CCRL2. The selection of these 7 

marker genes was performed using a threelayer gene 

selection, which is a sequential gene selection procedure 

that involves identifying differential expression genes, 

immune-related genes and gene validation utilizing deep 

learning based F-score algorithm models to identify the 

most optimal gene combinations. By applying this 

approach, we were able to narrow down the list of potential 

biomarkers from 10,569 genes to the most relevant set of 7 

IRGs, which significantly improved the accuracy and 

reliability of our mortality predictions. 
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LỰA CHỌN GENE NỔI BẬT NHẰM NÂNG CAO 

HIỆU QUẢ CHẨN ĐOÁN NHIỄM TRÙNG MÁU 

DỰA TRÊN HỌC SÂU 

 

Tóm tắt: Nghiên cứu đề xuất một phương pháp mới để 

chẩn đoán nhiễm trùng máu ở trẻ em sử dụng mô hình 

mạng lưới thần kinh tích chập CNN và sự kết hợp của 7 

gene liên quan đến miễn dịch (IRG), bao gồm CD24, TTK, 

PRG2, CLEC7A, CCL3, TNFAIP3 và CCRL2. Bên cạnh 

đó, nghiên cứu cũng đề xuất quy trình chọn lọc gen ba lớp 

bao gồm quy trình tuần tự kết hợp phân tích biểu hiện gen 

khác biệt, sau đó là chọn lọc các gene có liên quan đến miễn 

dịch, cuối cùng là tính toán điểm gene bằng thuật toán F-

score để xác định các gen biểu hiện khác biệt có nhiều 

thông tin nhất, sau đó sử dụng mô hình học sâu để xác định 

sự kết hợp gene tối ưu. Hiệu suất của thuật toán đề xuất 

được đánh giá bằng quy trình xác thực chéo 3 lần với các 

mô hình học sâu. Kết quả cho thấy các tổ hợp gene được 

chọn đạt độ chính xác 91.92% và diện tích dưới đường 

cong ROC là 87.86%, cho thấy thuật toán đề xuất là đáng 

tin cậy để dự đoán tỷ lệ tử vong do nhiễm trùng máu ở trẻ 

em. Ngoài ra, việc xác định dấu hiệu bao gồm 7 IRG gene 

liên quan đến tỷ lệ tử vong do nhiễm trùng máu ở trẻ em có 

khả năng hỗ trợ phát triển các dấu ấn sinh học để chẩn đoán 

và tiên lượng đáng tin cậy cho bệnh nhiễm trùng máu. 
 

Từ khóa: Nhiễm trùng máu trẻ em, gene biểu hiện khác 

biệt, gene miễn dịch, lựa chọn gene nổi bật, học sâu. 
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