
Le Thi Thuy Duong, Hoang Dang Hai, Pham Thieu Nga

A CONTROL MECHANISM FOR
RELIABLE BURST DATA TRANSFER

IN IoT NETWORKS

Le Thi Thuy Duong *, Hoang Dang Hai+, Pham Thieu Nga*
*Faculty of Information Technology, Hanoi University of Civil Engineering

+Posts and Telecommunications Institute of Technology

Abstract: IoT networks are widely used in various

areas, such as industry, healthcare, agriculture, and the

environment. Many applications require to transfer a

large amount of data collected by IoT devices to a central

server. Without an appropriate control mechanism, the

network is prone to congestion. The Constrained

Application Protocol (CoAP) has been proposed for data

transmission in IoT networks. This paper analyzes the

shortcomings of CoAP and indicates that CoAP does not

have rate control and no support for burst data transfer.

To extend CoAP, we develop an analytical model for

reliable burst data transfer with CoAP using rate control.

Based on this model, we propose a new rate control

mechanism that allows reliable burst data transfer with

high throughput, low delay, and improved congestion

control of CoAP in IoT networks.

Keywords: Rate control, Burst data transfer,

Congestion control, CoAP, IoT networks.

I. INTRODUCTION

The Internet of Things (IoT) networks are being
developed and widely applied in many fields such as
industry, agriculture, healthcare, transportation, and
environment. Typical applications are, for instance,
monitoring networks (in medical, security). In these
applications, IoT devices collect data using various
sensors and transfer blocks of data to a monitoring center.
Such applications often require to transfer an enormous
amount of collected data to a central server through the
IoT network and Internet. The transmission of such data
burst easily causes the risk of network congestion. The
congestion control problem has been extensively studied
in traditional computer networks, and became a new
interested topic in IoT networks. This is because IoT
networks have different characteristics compared to
traditional networks. On the other hand, the design of
lightweight transport protocols for IoT networks has
reduced the required congestion control function.
Lightweight protocols for IoT networks, such as the
Constrained Application Protocol (CoAP), lack some
features required for congestion control. This is why the
issue of congestion control and avoidance is being a hot

research topic in IoT networks.

An IoT network typically consists of multiple devices
with attached sensors, which collect data from their
surrounding environment. Furthermore, an IoT network
includes several network devices (e.g., gateways, routers)
for relaying data from an IoT network to a central
processing system. IoT devices are typically small with
constrained resources (limited memory and processing
power). As a result, it is not possible to use the original
Internet protocols for IoT devices. A study in [1] showed
that TCP, that is the prominent transport protocol of the
Internet, cannot be used for data transfer in IoT networks.

Recently, numerous lightweight protocols have been
developed for IoT networks. The typical one is the
Constrained Application Protocol (CoAP). CoAP has been
standardized by the Internet Engineering Task Force
(IETF) for IoT networks with RFC 7252 [2]. In essence,
CoAP is a lightweight application layer protocol that runs
on top of the UDP (User Datagram Protocol) layer.
However, CoAP supports reliable connection-oriented
data transport similar to TCP with acknowledgment
(ACK) messages. Similar to TCP, CoAP has a simple
congestion control mechanism that relies on timeout to
retransmit packets whenever a packet loss occurs.
Nevertheless, the design of CoAP reduces some
congestion control facilities to keep the protocol
lightweight. Numerous studies, such as [3][4], shown the
limitations of CoAP in congestion control. The standard
document RFC 7252 [2] indicated remaining issues of
CoAP and outlined several future developments for
CoAP.

In this paper, we examine two fundamental
shortcomings of the CoAP: 1) CoAP does not support
reliable burst data transfer; 2) CoAP does not control the
sending rate with respect to congestion control. On this
premise, this paper proposes a new rate-based congestion
control mechanism for CoAP to support reliable burst data
transfer in IoT networks. The proposed mechanism
extends CoAP by adding a congestion detection and a rate
adjustment mechanism to mitigate congestion. This
mechanism improves the protocol performance in terms of
delay and throughput. The key contributions of this paper
are: 1) an analytical model for burst data transfer using
CoAP, and 2) a new mechanism for CoAP rate control to
avoid congestion. The remainder of this paper is
organized as follows. Section II briefly presents the
operation of CoAP, its shortcomings, and the related

Contact author: Hoang Dang Hai

Email: haihd@ptit.edu.vn

Manuscript received: 06/2022, revised: 08/2022,

accepted: 08/2022

A CONTROL MECHANISM FOR RELIABLE BURST DATA TRANSFER IN IoT NETWORKS

work. In Section III, we present our proposed control
mechanism. In Section IV, we provide simulation results
for the proposed control mechanism. Section V concludes
the paper.

II. OVERVIEW OF COAP AND RELATED WORK

A. Overview of CoAP

As indicated in [2], CoAP has two operation modes:
reliable and unreliable data transport. The reliable data
transport mode performs similar to TCP. This means that
CoAP uses acknowledgment (ACK) packets to confirm
the transmission of confirmable (CON) packets. This
paper focuses only on reliable data transport mode of
CoAP. The term “packet” defines a message with a CoAP
header and a payload. Figure 1 shows the operation of a
CoAP in reliable transport mode. Let Ts denote the
sending time of a CON packet, Ta be the receiving time of
an ACK packet. The time difference Ta-Ts presents a
round-trip time (RTT). RTT is the time interval between a
transmitted CON packet and a received ACK from the
receiver. RTO is the retransmission timeout, i.e., the time
interval used to check for the receiving an ACK.

Figure 1. Operation of CoAP in reliable transport mode

As shown in the figure, CoAP uses confirmable
packets (CON) and acknowledgment packets (ACK) for
the reliable mode. A CoAP sender sends only the next
CON packet after receiving an ACK. In this way, CoAP
performs a simple stop-and-wait mechanism for reliable
communication. There are idle intervals between the time
of receiving an ACK and sending a next CON packet (the
time difference of Ta and Ts).

The CoAP sender sets an initial RTO for each CON
packet. According to [2], the initial RTO is a fixed value,
which is selected between 2s and 3s. The CoAP sender
may not receive an ACK for the transmitted CON packet.
The reason may be: 1) the CON packet cannot arrive at
the destination (as illustrated in the figure) because of
channel errors, link errors, or congestion; or 2) the ACK
packet sent from the receiver cannot arrive at the sender
owing to the errors of the backward link and processing of
the receiver. In this paper, we focus only on the loss of
ACK packets owing to congestion, as indicated in [2].

When an ACK is not received within the initial RTO,
the CoAP sender assumes a loss of CON packet and
attempts to retransmit the lost packet (Retry in the figure).
After each retransmission, the RTO value is doubled.
Four retransmissions are allowed for each retransmitted
packet. After four unsuccessful retries, the transmission is
considered to have failed. The strategy for RTO doubling
is called binary exponential backoff (BEB). Figure 1
demonstrates three lost CON packets. The last packet was
successfully retransmitted after three attempts.

As presented, the retransmission mechanism for lost
packets in CoAP is similar to TCP because CoAP
assumes packet loss as an indicator of congestion. A
difference is that TCP considers a triple of ACK losses.
The main function of reliable transport protocols such as
TCP and CoAP is the retransmission of lost packets.
However, retransmitted packets may be duplicated or
disordered at the receiver. In principle, the higher layer is
responsible to process such problem, not TCP or CoAP.
For instance, the higher application layer can discard
duplicated packets and rearrange the order of received
packets. Another problem may arise in case of temporal
losses. In this case, packets may have lost after four
unsuccessful retransmissions. The sender can discard the
lost packets and continues to send further packets, or the
connection will be interrupted. In a such situation, the
higher application layer must restart the connection and
retransmit the block of lost packets. Nevertheless, this
issue and the functionality of higher application layers are
out of scope of this paper.

B. Shortcomings of CoAP

Referring to the operation of CoAP presented in the
previous section, we indicate two fundamental
shortcomings of CoAP as follows: 1) the lack of support
for reliable burst data transfer; 2) the lack of rate
adjustment for congestion control. We analyze these
shortcomings in this subsection.

First, CoAP does not support reliable burst data
transfer like TCP. The CoAP can only send another
packet when it receives an ACK for the previous packet.
Assume that a packet A is sent at T1, and this packet
arrives at the receiver at T2. The receiver gets the packet
and sends an ACK back to the sender at T3. At T4, the
sender receives this ACK. In this stop-and-go mechanism,
the sender is idle for all the time interval from T1 to T4
except waiting for the ACK. The round-trip time RTT is
equal to T4 – T1. For a long distance (e.g., the receiver is
far from the sender), RTT becomes large. The allocated
bandwidth for the connection would be wasted owing to
long idle intervals. The default leisure time was 5 seconds
for CoAP [2]. This means that CoAP may wait for the
acknowledgments at a fixed rate. Thus, CoAP is
inefficient and has undesirable poor performance in this
case.

According to [2], the CoAP restricts the number of
concurrent packets that can be sent without receiving
ACK. Concurrent packets are defined as inflight packets
(i.e., packets in transit in the network not yet
acknowledged). As shown in [2], the CoAP limits the
maximum number of outstanding interactions by a fixed
value named NSTART (default is one). The stop-and-go
mechanism of CoAP is not suitable for burst traffic. This
means that CoAP does not support burst data transfer.

Le Thi Thuy Duong, Hoang Dang Hai, Pham Thieu Nga

The second deficiency of CoAP is the lack of rate
control in congestion. The sending rate depends on the
arrival time of ACK packets. This means that the sending
rate would be constant in the network condition without
congestion. The CoAP sender adjusts only the
retransmission speed based on RTO backoff in case of
congestion, i.e., when congestion has occurred. The
retransmission speed is halved each time because the RTO
is doubled for each retransmission attempt. If the RTO
value is short compared to the propagation delay between
the sender and receiver, the sender may early trigger the
retransmission leading to spurious retransmission and
undesirable additional load for the network. Large RTO
values can lead to long idle delays that cause inefficiency
and poor performance of the protocol. Furthermore, fixed
RTO values do not reflect the dynamic nature of the
networks. The propagation delay (or RTT) frequently
fluctuates depending on the load and congestion situation
in the network. The current CoAP ignores the changes in
RTT owing to dynamic network conditions.

In summary, CoAP does not allow reliable burst data
transfer. In addition, CoAP lacks a rate control,
particularly for congestion control and avoidance. The
simple congestion control of the current CoAP is
insufficient for burst traffic and congestion control. This
paper focuses on these shortcomings and proposes a new
control mechanism for CoAP.

C. Shortcomings of CoAP

In this subsection, we present related studies with
respect to the issues of the current CoAP. According to
our survey, modifications for CoAP can be classified into
three main groups: 1) enhancements for RTO
computation, 2) proposals for burst data transfer, and 3)
modifications for rate control.

1) Enhancements for RTO computation

Most studies focused on RTO modifications for CoAP
[5]-[10]. The reason is that a fixed RTO value is
unsuitable for IoT networks because of dynamic network
conditions. The authors in [5] highlighted the need for
RTO adjustment according to the variability of RTT.
Dynamic update of RTO helps restrict the frequency of
retransmissions. If a fixed RTO value is used for
connections with low bandwidth and large delay (large
RTT), RTO will quickly pass without receiving an ACK.
In this case, the sender immediately retransmit the
previous packet, although it would receive the delayed
ACK packet in a later time. The retransmitted packet is
redundant in this case. Moreover, the receiver receives a
duplicated packet. This issue is undesirable, leading to a
waste of scarce network bandwidth and increase of delay.
Therefore, the authors in [5], [6] proposed to measure the
round-trip time to adjust RTO. Owing to the variation of
RTT, two estimators were proposed: a "strong RTO
estimator" and a "weak RTO estimator". The authors
proposed a modified CoAP called CoCoA [5], [6]. In
addition, CoCoA used a variable backoff factor (VBF)
instead of BEB mechanism of CoAP.

Another CoAP variant, CoCoA+, was proposed in [7].
CoCoA+ used a smaller RTT multiplicative factor to
reduce the impact of weak RTO estimator of CoCoA.
However, the adjustment of RTO depended much on RTT
and it is difficult because of the frequent variation of RTT.

The authors [7] suggested a probabilistic backoff factor
(PBF). However, CoCoA+ was unable to select the
correct RTO value for burst traffic. The retransmission
can occur quickly in many network scenarios, especially
in case of small RTT and burst traffic resulting in poor
performance compared to the basic CoAP in various
network conditions.

As indicated in [7]-[10], choosing a right RTO is a
problem in dynamic network conditions because of the
variability of RTT. If the RTO value is large, the sender
cannot receive further ACKs. A dynamic scaling factor
was proposed in [8] for estimating RTO. In [9], the
authors proposed using a fuzzy logic system to compute
RTO. The RTO value was computed using a smooth RTT
estimation and flexible backoff mechanism. In [10], the
authors proposed several modifications to the computation
of RTO. The maximum mean deviation of the RTO was
computed to avoid the impact of RTT variations and limit
the overall RTO value.

2) Proposals for reliable burst data transfer

Until now, few studies have addressed the problem of
burst traffic. The basic CoAP does not support burst
traffic. The RFC 7252 [2] indicated this limitation for
further development. Recently, an other RFC was
proposed for burst transfer, but in blocks [11][12]. The
mechanism in [11] proposed an option for transferring
large payloads in a block-wise manner. A block-wise
transfer mechanism was also proposed in [12]. However,
these mechanisms are only either for separating large
datagrams into blocks [11] or for unreliable data transfer
[12]. The mechanism in [12] focused on the issue of flow
control and error handling, that is, not on congestion
control.

In [13], the authors shown the issue of CoAP for burst
traffic owing to the wrong computation of RTO for
packets in burst. Thus, the authors introduced the
retransmission counter as an option field in the packet to
estimate the RTT for every packet of burst traffic. The
authors in [14][15] investigated the impact of RTO for
video streaming applications. The papers shown that the
RTO and RTT values have significant impact on the burst
transfer of streaming data.

3) Modifications of CoAP for rate control

Several studies addressed the problem of concurrent
transmission together with an RTO adjustment. In [14],
the authors suggested a control mechanism for CoAP
based on the TCP BBR (bottleneck bandwidth round-trip
propagation time) protocol. A rate-based control
mechanism, that is the BDP-CoAP [16], was proposed.
This mechanism estimates the bottleneck bandwidth and
round-trip propagation time to estimate the new RTO. The
updated RTO is used to adjust the sending rate. The
remaining issue of BDP-CoAP is the overestimation of
the available bandwidth, which results in inefficient
performance, particularly in burst traffic. Furthermore,
this method regulates only the rate based on bottleneck
bandwidth and RTO estimation.

The paper in [17] proposed a rate-based approach for
regulating the sending rate of CoAP sources. The
adjustment of the sending rate was based on throughput
estimation using the link capacity. This mechanism
required the knowledge of bandwidth allocation along the

A CONTROL MECHANISM FOR RELIABLE BURST DATA TRANSFER IN IoT NETWORKS

connection path. However, it is difficult to estimate the
link capacity under dynamic network conditions. Wrong
allocation can lead to inaccurate allocation of the
transmission rate.

Another rate-based scheme was proposed in [18]. This
mechanism used probe packets to discover the bottleneck
bandwidth and regulated the sending rate accordingly.
The scheme allows burst data transfer and was able to
distinguish congestion losses from wireless losses using
probe packets. However, the authors indicated the
difficulty in estimating the bottleneck bandwidth for
updating the RTO and sending rate.

D. Summary

In Section II, we have provided an overview of the
CoAP protocol, highlighted its shortcomings, and
presented several studies on the related issues. As
presented, most of studies focused on the issues of RTO
computation instead of using the fixed RTO similar to the
basic CoAP. However, these modifications affected only
the retransmission, that is, only when congestion has
occurred. Therefore, it is necessary to develop a suitable
control mechanism for adjusting the sending rate before
congestion occurs. The sending rate must be adjusted
according to dynamic network conditions. The problem of
reliable burst data transfer has still not fully addressed.
Because the current CoAP does not support burst traffic, a
new control mechanism is necessary to solve this issue.

In next section, we present the proposed control
mechanism for improving burst data transfer using CoAP
in IoT networks.

III. PROPOSED CONTROL MECHANISM

A. Analytical model

In this section, we develop an analytical model for
CoAP with inflight packets. The purpose of this analytical
model is to find a method for control the sending rate to
avoid congestion. The aim of this model is for reliable
burst data transfer using CoAP.

As shown in Figure 1, the sequence of CON and ACK
packets can be described by a discrete-time model. The
discrete time model was commonly used to build
analytical models in computer networks. Examples are the
models in [19], [20]. In [19], Kleinrock analyzed the
congestion control for TCP using queueing systems based
on a discrete-time model. In [20], Keshav used a discrete-
time model to illustrate a TCP conversation over a series
of network nodes in the end-to-end path. The discrete-
time model will be appropriate for any control system
because the control decisions can be made in discrete-time
intervals. Thus, we use the discrete-time model for CoAP
transactions. However, the model for CoAP differs from
the model for TCP (e.g., in [19], [20]) under various
aspects. First, TCP model used congestion window to
describe the throughput and delay as a function of the
window. The control decision was given to increase or
decrease the window size. In contrast, our CoAP model
uses inflight packets and adjusts the sending rate. The
CoAP model interprets the delivery rate and packet delay
as a function of the inflight packets. Second, TCP model
used triple ACKs as a signal for packet losses. In contrast,
our CoAP considers an ACK loss as packet loss, as

indicated in RFC 7252 [2]. Third, TCP model had the goal
to control the window size, whereas our CoAP model
aims to control the sending rate.

Figure 2 presents the sequence of sending and
receiving periods between a sender and receiver in our
discrete-time model for CoAP. Each period k denotes a
round-trip time (RTT), and T(k) denotes the time duration
of period k. In this figure, a CoAP sender can send several
inflight packets during each period k. The discrete-time
model is suitable to interpret the transaction between the
sender and receiver because the rate adjustment will be
performed in a discrete-time manner. That is, the decision
on rate control is at the time of sending a CON packet.

Figure 2. Periods for burst sending

Let (k) denote the sending rate during period k, µ(k)
be the delivery rate at the receiver in period k, T(k) be the
time duration of period k. The amount of data packets (the
inflight packets) being transmitted in period k can be
computed as follows:

L(k) = (k)×T(k) (1)

Among the transmitted packets L(k), there are
µ(k)xT(k) packets that have been processed by the
receiver (i.e., server has received the packets and
answered with ACKs). Let n(k) denote the instantaneous
number of packets that arrived at the destination waiting
for processing, the accumulative number of packets
during the next period (k+1) will be n(k+1). We have:

n(k+1) = n(k) + (k) × T(k) - µ(k) × T(k) (2)

From (1) and (2), we have:

n(k+1) = n(k) + L(k) - µ(k) × T(k) (3)

From (3), we have:

(4)

Using (1) and (4), we can have:

(5)

Where: n = n(k+1) - n(k) (6)

Le Thi Thuy Duong, Hoang Dang Hai, Pham Thieu Nga

n represents the amount of increased or decreased
packets between the periods, which depends on the
sending rate of the sender and processing capability of the
receiver. According to [20], we define a utilization factor

 as follows:

(7)

The system (i.e., the network) is stable if 1, this

means µ . That is, the sending rate must be less than or
equal to the delivery rate in a stable condition. In other
words, the delivery rate must be greater than or equal to
the sending rate to avoid congestion. This means that the
minimal delivery rate µ(k) at step k must be equal to the

sending rate (k-1) at step k-1. We can rewrite (5) as
follows:

(8)

The quotient in (8) represents an amount of

increased or decreased packets at each period k. The

smallest increase will be one if n is equal to one. If we
do not want to make the control more aggressive, we can

choose the value n = 1 for the increase of sending rate in
case of no congestion. Thus, we can rewrite (8) as
follows:

(9)

The increase of one packet per T(k) is reasonable
owing to the possible large amount of inflight packets at
this moment.

On the other hand, Jain [21] showed a possibility to
describe the network as a black box. The senders treat the
network as a black box and interact with the receiver
using requests and responses. In [20], Kleinrock showed
that it is possible to model the connection from the
senders to receiver in form of a physical pipe. The
diameter of the pipe describes the maximum bottleneck
bandwidth for all the flows. The pipe length describes the
propagation delay. Intuitively, the delivery rate must be
less than or equal to the maximum bottleneck bandwidth
to avoid congestion.

Assume that the pipe can be described in a cartesian
coordinate system where the x-axis represents the
propagation delay, y-axis represents the diameter of the
pipe. Let Y denote the portion of the diameter used by a
CoAP flow, X be the propagation delay of the flow. The
product of X and Y will represent the allowed inflight
packets for such flow. Thus, we can define a function to
represent the number of inflight packets for each flow.
Because of the non-linear characteristics of the
parameters, we must use an exponential function. Using
the exponential function is the best way to model a non-
linear variable. We define an utility function U(L) for
inflight packets as follows:

(10)

where (L) is a function of L representing the delivery
rate at the receiver, L is the number of inflight packets,

T(L) is the delay function of L, and is a control factor,
> 0.

The utility function U(L) represents the relationship
between the delivery rate and packet delay with the

variable L (that is the inflight packets). The delivery rate
is defined by the ratio of the packet number received at
the destination and a time unit. This ratio corresponds to
the receiving rate of the flow.

From (10), we have

log(U(L)) = log(T(L)) – log((L) (11)

We take the differential for both sides to obtain:

(12)

The utility function U(L) will be maximum if its
derivative is equal to zero. That is,

(13)

Thus,

(14)

The quotient represents the relative variation of

the delivery rate, whereas the quotient represents the

relative variation of the packet delay with the number of

inflight packets L. The value represents the relative
variation ratio of both presented quantities.

The utility function increases with the delivery rate
and packet delay. This function reaches a maximum at a
point described by (14) according to the number of
inflight packets. Subsequently, the function decreases.
This is the case of congestion when the number of inflight
packets becomes too large. The goal of control is to limit
the number of inflight packets just before a maximum
point of the utility function. The meaning of control factor

 is as follows:

- If < 1, the increase speed of the delay variation is
faster than the increase speed of the delivery rate
variation. The target of control will be in the direction of
lower delay.

- If > 1, the increase speed of the delay variation is
slower than the increase speed of the delivery rate
variation. The target of control will be in the direction of
higher delivery rate.

- If = 1, the packet delay increases corresponds to
the delivery rate. The target of control is to maintain the
balance between delivery rate and packet delay.

Let B(L) denote the number of inflight packets at the
end of the period k. We consider two cases: 1) the case
without packet loss, and 2) the case with packet loss.

In the case of no packet loss, all transmitted packets L
will arrive at the destination within period k. The number
of received packets will be B(L). At the maximum point
of U(L), we can determine the delivery rate (L) as
follows:

(15)

Thus, from (14), we can have

(16)

A CONTROL MECHANISM FOR RELIABLE BURST DATA TRANSFER IN IoT NETWORKS

(17)

(18)

(19)

Owing to the assumption that no packet loss happens,
from (1), we can deduce that

(20)

Thus, from (19) and (20), we can obtain

(21)

Equation (21) indicates an amount of inflight packets
B(L) at the maximum point of the utility function P(L) in
case of no packet loss.

Now, we consider the case of packet loss. Suppose
that a packet loss occurs owing to congestion during
period k. Let B(L) denote the number of inflight packets
at a maximum of the utility function P(L) in case of
packet loss. The delivery rate (L) at the time of packet
loss can be determined as follows:

(22)

By substituting (L) into (11), we have

log(U(L)) = (1+)log((L)) – log(B(L)) (23)

Again, the utility function U(L) will be maximum if its
derivative is equal to zero. That is,

(24)

Thus, we can compute B(L) as follows:

(25)

As presented previously, the sending rate must be less
than or equal to the delivery rate. Therefore, the maximal
sending rate just before the packet loss can be determined
as follows:

(26)

By substituting (26) into (25), we get

(27)

By comparing (27) and (21) we can conclude that
B(L) in case of packet loss is less than B(L) in case of no

packet loss by a factor of at the maximum utility

function U(L). If we choose = 1, we have

(28)

That is, B(L) in case of packet loss is a half of B(L) in
case of no packet loss at the maximum of utility function.
This means that the sending rate must be adjusted to
maintain a half of inflight packets to obtain the maximum
for the utility function in case of packet loss. Because the
number of inflight packets is the same before and after
packet loss, the sending rate must be reduced to a half in
case of packet loss.

In conclusion, we can have the following control
mechanism:

- In case of no packet loss, the CoAP sender can
increase the sending rate by one as follows:

(29)

- In case of packet loss, i.e., when congestion occurs,
the CoAP sender must decrease the sending rate by half as
follows:

(30)

where (k) is the sending rate at step k, (k-1) is the
sending rate at the previous step k-1, T(k) is a round-trip
time that is measured at step k, and k is the time when the
sender receives an ACK.

The expressions (29) and (30) present the proposed
rate control mechanism for CoAP in this paper.

B. A rate control mechanism for CoAP

We propose a rate control mechanism for CoAP based
on the analytical model developed in the previous section.
The control mechanism is mainly implemented at the
CoAP sender. On the CoAP receiver, there are only
functions for receiving CON packets and sending ACK
packets to the senders.

The operation of this control mechanism is described
using four states in the next paragraphs. The pseudocodes
for the key algorithms in the states are presented in the
figures 3, 4, 5, and 6 in this subsection.

We use the following notations.

- Rstart: the start sending rate of a CoAP sender during
the startup state.

- R: the computed sending rate for the CoAP sender.

- nACK: the number of received packets during the
startup state.

- RTT: the measured round-trip time.

- T: the time to send the next packet.

The function SendNextPacket is for packet sending. In
case of packet loss, this function first attempts to
retransmit the lost packets before sending another packet.

1) Startup state

At the startup, the CoAP sender uses a default start
rate Rstart. This start rate is only valid during two RTTs.
Subsequently, it is replaced by the computed sending rate
in the steady state.

As indicated in Figure 3, the sender transmits packets
within the first while loop. The inter-packet interval is T.
When the first ACK is received, the sender measures RTT
and performs the second while loop to count the received
ACKs for the sent packets.

After two RTTs, the sender computes the sending rate
as follows:

R = min(Rstart, max(1, nACK) / 2*RTT) (31)

The sender then enters the steady state.

Le Thi Thuy Duong, Hoang Dang Hai, Pham Thieu Nga

Figure 3. Startup State

2) Steady state

Figure 4 presents the steady state. This state starts with
a sending rate R computed at the previous step. If there is
no packet loss, the sender checks the time to send the next
packet. If any ACK is received, RTT is updated
accordingly. Otherwise, packet loss will be checked.

Packet loss can be detected in two cases: 1) If the
sender does not receive an ACK after timeout (RTO), it
assumes packet loss owing to congestion; 2) If the sender
detects a gap in the packet sequence numbers, several
packets have been lost. The gap may include retransmitted
packets that were not successful after the maximal number
of retransmissions. The function CheckLoss is used for
packet loss detection.

If the sender detects packet loss, it changes to the
detect state. If no packet loss is detected, the sender
checks for the time to adjust the sending rate. The rate
updating period is one RTT. The sending rate R is
adjusted using (29).

3) Detect state

Figure 5 presents the detect state. The CoAP sender
enters this state if packet loss is detected, i.e., congestion
occurs. The CoAP sender immediately reduces the
sending rate by a half using (30). Then, the sender
performs a while loop for a time of one RTT. Within this
loop, it first checks for the time to send the next packet.
As indicated above, this function retries to retransmit the
lost packets before sending the next packet. If any ACK is
received within one RTT, the sender recovers the previous
sending rate and return to the steady state. Otherwise, the
sender assumes that the network is still congested. A
heavy congestion situation has occurred. Thus, the sender
changes to the backoff state.

Figure 4. Steady State

Figure 5. Detect State

A CONTROL MECHANISM FOR RELIABLE BURST DATA TRANSFER IN IoT NETWORKS

4) Backoff state

Figure 6 presents the backoff state. During this state,
the sender continues to check for the receiving ACK
within a while loop. In this loop, the sender first checks
for the time to send the next packet. Again, the function
SendNextPacket tries to retransmit the lost packets before
sending another packet. If no ACK is received within the
maximum transaction time as defined in [2], the
transaction is considered to have failed. The sender then is
required to restart. If any ACK is received, the sender
updates RTT and returns to the steady state. Otherwise,
the sender reduces the sending rate again by a half to
perform a slower transmission.

Figure 6. Backoff State

IV. SIMULATION RESULTS

In this section, we present the simulation results for
the proposed control mechanism using the Network
Simulator NS-3.36 [22]. For the convenience, the
proposed mechanism is called mCoAP. All simulation
scenarios used a star network topology, as shown in
Figure 7.

We used 10 flows for CoAP and 10 flows for mCoAP.
All CoAP senders were implemented at the wireless nodes
of a Wi-Fi network. This Wi-Fi network used a base
station (BS) and was connected to the Internet through a
gateway. All senders are connected to a central server in
Internet. The Wi-Fi network was established using the
standard parameters of IEEE 802.11 in NS-3 [22]. The
bottleneck link (link between the BS and the gateway) had
a bandwidth of 250 Kbps with link delay of 64 ms. The
link bandwidth between the gateway and server was 1
Mbps with link delay of 70 ms. These parameters were

used to create dynamic congestion situation in the
experiments. Other values for bandwidth and delay may
be possible. However, the purpose of these experiments
was to show the feasibility of the proposed control
mechanism and compare with the original CoAP. Thus,
such parameters are sufficient to simulate various
congestion scenarios.

Figure 7. Simulation Model

The proposed control mechanism mCoAP was
compared to the original CoAP using the following
metrics: delay, throughput, number of sent packets,
number of ACKs, number of packet losses, number of
retransmissions, and number of duplications. All
measured values were computed using average values for
all ten flows. The simulation time was 300 seconds for all
experiments. We conducted ten times for each experiment
to perform confident measurements.

Figure 8 shows the average delay comparison for
mCoAP and CoAP. As indicated, congestion occurred
during the interval from 170 s to 290 s owing to the
accumulated number of transmitted packets from ten
flows. CoAP had low delay (around 900 ms) during 0s to
160 s. Subsequently, the delay in CoAP was increased
rapidly. Packet delay was approximately 30 s during 170 s
and 250 s. The reason is that many packets cannot be
received at server because of timeout. Thus, CoAP
retransmitted these packets using doubled RTO at each
retransmission attempt (see Table 1 for the number of
retransmissions).

Figure 8. Average Delay Comparison

In contrast, mCoAP adjusted a suitable sending rate,
thus, no packet was required to be retransmitted.
Therefore, mCoAP can maintain a low average delay of
approximately 790 ms to 1200 ms, as indicated in the
figure. These results indicated that mCoAP controlled
congestion better than CoAP. Thus, mCoAP can maintain
a lower delay.

Le Thi Thuy Duong, Hoang Dang Hai, Pham Thieu Nga

Figure 9 shows an average throughput comparison of
10 mCoAP flows and 10 CoAP flows. As indicated,
mCoAP and CoAP had approximately the same average
throughput during the time from 0s to 170 s, where the
network was still not congested. In the time of congestion
(from 170 s to 290 s), the throughput of CoAP decreased
quickly. Meanwhile, mCoAP still retained a high average
throughput of approximately 0.711 Kbps (for each flow).
The throughput peak during 0 to 20 s indicates that
mCoAP started with a high sending rate to estimate the
bottleneck bandwidth during the startup state. These
results indicated that mCoAP has better throughput
performance than that of the CoAP in case of congestion.

Figure 9. Average Throughput Comparison

Figure 10 shows the average delay for the three CoAP
flows (randomly selected from 10 flows). The results
indicated that the average delay was approximately the
same for all CoAP flows. High delay was during
congestion (from 170 s to 290 s).

Figure 10. Average Delay of three CoAP Flows

Figure 11. Average Delay of three mCoAP Flows

Figure 11 shows the average delay for three mCoAP
flows (randomly selected from 10 flows). The results
indicated that the average delay was approximately
equivalent for all mCoAP flows. A delay variation was
approximately 920 ms, even in the time interval of
congestion (from 170 s to 290 s).

Table I shows a performance evaluation of mCoAP
and CoAP. The results indicated that the number of sent
packets, number of ACKs and retransmitted packets,
number of received packets with ACK, and number of
successful received packets in mCoAP were higher than
those in CoAP. Note that the number of successful
received packets is defined as the difference between the
sent packets and duplicated retransmitted packets. The
number of packet losses is the sum of lost packet and
duplicated packets because the duplicated packets are
useless and will be discarded.

As shown in Table I, the average delay of 10 mCoAP
flows was 922.41 ms that was less than 4175.40 ms of 10
CoAP flows. The average throughput in mCoAP was
0.7111 Kbps that was higher than 0.5333 Kbps of CoAP
in the same competing condition and bottleneck
bandwidth in these experiments.

We changed simulation condition to create a heavy
congestion situation. In these simulation scenarios, the
link bandwidth between the gateway and the server was 1
Mbps, but the link delay was 120 ms. This link delay was
double compared to the previous simulation scenarios.
The round-trip delay was larger than the previous
resulting in higher likelihood of congestion. Under this
condition, we indicated a heavy congestion situation for
all flows competing the common bottleneck bandwidth.

Figure 12 shows the results of delay comparison of
mCoAP and CoAP using these simulation scenarios. As
indicated, the flows faced to congestion immediately at
the startup. The delay increased rapidly in CoAP. In
contrast, mCoAP can bound the delay during a certain
time interval, that is, from 0s to 100 s. Subsequently, the
delay increased quickly in mCoAP owing to heavy
congestion. However, the results indicated that mCoAP
can handle heavy congestion better than CoAP.

Table I. Performance evalution of
mCoAP and CoAP

Average for 10 flows mCoAP CoAP

Number of sent packets 219 163

Number of ACKs and

retransmitted packets
216 162

Number of

retransmitted packets

0

(0,00%)

33

(20,53%)

Number of duplicated

packets

0

(0,00%)

29

(17,93%)

Number of received

packets with ACK

216

(100,00%)

159

(98,21%)

Successful received

packets

216

(100,00%)

134

(82,20%)

Packet Losses
0

(0,00%)

32

(19,73%)

Average delay 922,41 ms 4175,40 ms

Average throughput 0,7111 Kbps 0,5353 Kbps

A CONTROL MECHANISM FOR RELIABLE BURST DATA TRANSFER IN IoT NETWORKS

Figure 12. Average Delay in Heavy Congestion

Figure 13 presents an average throughput comparison
of mCoAP and CoAP under heavy congestion. Owing to
the variation of bottleneck bandwidth, the throughput of
both mCoAP and CoAP fluctuated. Nevertheless, the
fluctuation was approximately a baseline that was less
than 1 Kbps. For mCoAP, there was some peaks because
mCoAP detected packet losses and changed the operation
state. At the moment of state change, mCoAP tried to
keep the highest throughput as possible. Thus, the peaks
represented the quotient of high number of inflight
packets and the short change time duration.

Figure 13. Average Throughput in Heavy Congestion

Figure 14 shows the average delay of three CoAP
flows (randomly selected from 10 flows). The results
indicated that flows had high equivalent packet delay. The
high delay values were because of the RTO backoff
mechanism of CoAP. The initial RTO of 2000 ms was
doubled for each retransmission.

Figure 15 shows the average delay of three mCoAP
flows (randomly selected from 10 flows). As indicated in
the figure, the average delay of flows was small for all
flows during the first-time interval from 0s to 100 s. The
reason is that mCoAP tried to adjust the rate to mitigate
congestion as explained above. Thus, mCoAP can bound
the small delay during a certain interval. Owing to heavy
congestion, the number inflight packets increased
accumulatively. Therefore, the delay increased quickly
when congestion became more serious. Again, the delay
values in mCoAP were high owing to the RTO backoff as
same as in CoAP.

Table II presents a performance evaluation of mCoAP
and CoAP under heavy congestion condition. The
comparison metrics are the number of sent packets,
number of ACKs and retransmitted packets, number of

retransmitted packets, number of duplicated packets,
number of received packets with ACK, number of
successful received packets, average delay, and average
throughput.

Figure 14. Average Delay of three CoAP Flows
in Heavy Congestion

Figure 15. Average Delay of three mCoAP Flows
in Heavy Congestion

As shown in Table II, the number of sent packets,
number of ACKs and retransmitted packets, number of

Table II. Performance evalution of mCoAP and
CoAP in heavy congestion

Averages for 10 Flows mCoAP CoAP

Number of sent packets 77 51

Number of ACKs and

retransmitted packets
74 49

Number of

retransmitted packets

35

 (47,24%)

48

(97,55%)

Number of duplicated

packets

27

 (36,88%)

40

 (82,62%)

Number of received

packets with ACK

63

 (85,33%)

44

 (89,57%)

Successful received

packets

36

 (48,45%)

4

 (6,95%)

Packet Losses
38

(51,55%)

45

 (93,05%)

Average delay 10902,82 ms 30665,06 ms

Average throughput 0,2459 Kbps 0,1519 Kbps

Le Thi Thuy Duong, Hoang Dang Hai, Pham Thieu Nga

received packets with ACK, and number of successful
received packets of mCoAP were higher than those of
CoAP. The number of duplicated packets of 27 (36.88%)
in mCoAP was less than 40 (82.62%) in CoAP. The
number of packet losses of mCoAP was 38 (51.55%),
whereas it was 45 (93.05%) in CoAP. The average delay
in mCoAP flows was 10902.82 ms, which was lower than
30665.06 ms in CoAP. The average throughput in mCoAP
was 0.2459 Kbps that was higher than 0.1519 Kbps of
CoAP under the same competing and network condition.

Note that, we defined the number of successful
received packets as the difference of the number of sent
packets and number of duplicated retransmitted packets.
The number of packet losses was defined as the sum of
lost packets and duplicated packets because the duplicated
packets are useless and will be discarded.

Summary: Section IV presents the simulation results
using two simulation scenarios: light congestion and
heavy congestion. The results indicated that the proposed
mechanism, that is the mCoAP, is feasible. In addition,
mCoAP can process congestion better than the original
CoAP under various dynamic network conditions.

V. CONCLUSION

As presented in this paper, a reliable burst data transfer
is typically required for many applications in IoT
networks. Without proper control mechanism, the transfer
of such burst data may lead to congestion in the network.
Congestion causes large packet delay, high packet loss
rate, low throughput, and a lot of duplicated
retransmissions. Although CoAP has been standardized
for data transmission in IoT networks, it still has several
shortcomings because of the simple design as a
lightweight protocol for IoT applications. As indicated in
[2], an enhancement for CoAP is encouraged. The
development of a suitable control mechanism for reliable
burst data transfer with CoAP is necessary.

In this paper, we briefly reviewed the design of CoAP,
presented its shortcomings and related work. Particularly,
we identified two key issues of the original CoAP,
including: the lack of support for reliable burst traffic, and
the lack of rate adjustment mechanism. That is why CoAP
required a high number of retransmissions and duplicated
retransmissions in case of burst traffic. The CoAP sources
shown a large delay and poor performance for burst data
transfers.

Subsequently, we proposed a new analytical model for
CoAP using burst traffic. We developed a rate control
mechanism based on this model for CoAP to support
reliable burst data transfer in IoT networks. Two groups of
simulation scenarios were proposed: light congestion and
heavy congestion. The simulation results indicated that the
design of a CoAP rate control mechanism for burst traffic
is feasible. The proposed mechanism can process
congestion better than the original CoAP under various
dynamic network conditions. In addition, the proposed
control mechanism outperformed the CoAP in terms of
delay, throughput, retransmission, duplication, packet
loss, and number of successful received packets.

Further studies can investigate the bottleneck
bandwidth and possibility to determine the bottleneck to

detect congestion early under dynamic network
conditions.

REFERENCES

[1] C. Gomez, A. Archia-Moret, J. Crowcroft, et.al., “TCP in
the Internet of Things: from ostracism to prominence,”
IEEE Internet Computing, vol. 22, Issue 1, pp. 29-41,
Jan./Feb. 2018.

[2] RFC 7252, “The Constrained Application Protocol
(CoAP),” available: https://rfc-editor.org/info/rfc7252.

[3] M.A. Tariq, M. Khan, M.T.R. Khan, D. Kim,
“Enhancements and Challenges in CoAP–A Survey,”
Sensors, vol. 20, 2020, 6391. DOI: 10.3390/s20216391,
pp. 1-29, Nov. 2020.

[4] H. Haile, K. Grinnemo, S. Ferlin, et.al., “End-to-end
congestion control approaches for high throughput and low
delay in 4G/5G cellular networks,” Computer Networks,
vol. 186, Feb. 2021.

[5] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, “CoAP
congestion control for the internet of things,” IEEE
Commun. Mag., vol. 54, no. 7, pp. 154–160, Jul. 2016.

[6] C. Bormann, A. Betzler, C. Gomez, and I. Demirkol,
“CoAP Simple Congestion Control/Advanced”, Internet-
Draft, Feb. 2018. Accessed: Jul. 24, 2021 [Online].
Available: https://tools.ietf.org/id/draft-bormann-core-
cocoa-03.txt.

[7] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, “CoCoA+:
An advanced congestion control mechanism for CoAP,”.
Ad Hoc Netw., vol. 33, pp. 126–139, Oct. 2015.

[8] S. Deshmukh, V.T. Raisinghani, “AdCoCoA–Adaptive
Congestion Control Algorithm for CoAP,” in Proc. of 11th
IEEE Int. Conf. on Computing, Communication and
Networking Technologies (ICCCNT), Kharagpur, India,
Jul. 2020, pp. 1-7.

[9] P. Aimtongkham, P. Horkaew, C. So-In, “An Enhanced
CoAP Scheme Using Fuzzy Logic with Adaptive Timeout
for IoT Congestion Control,” IEEE Access, vol. 9,
pp.58967-58981, Apr. 2021.

[10] S. Bolettieri, G. Tanganelli, C. Vallati, E. Mingozzi,
“pCoCoA: A precise congestion control algorithm for
CoAP,” Ad hoc Network, vol. 80, pp.116-139, Nov. 2018.

[11] C. Bormann, Z. Shelby, “Block–Wise Transfers in the
Constrained Application Protocol (CoAP),” Accessed: Jun.
24, 2021 [Online]. Available: https://rfc-
editor.org/info/rfc7959.

[12] M. Boucadair, J. Shallow, “Constrained Application
Protocol (CoAP) Block-Wise Transfer Options Supporting
Robust Transmission,” Internet-Draft, May 2021.
Accessed: Jun. 20, 2021 [Online].
https://tools.ietf.org/id/draft-ietf-core-new-block-14.

[13] J.J. Lee, K.T. Kim, H.Y. Youn, “Enhancement of
congestion control of Constrained Application
Protocol/Congestion Control/Advanced for Internet of
Things environment,” Int. J. of Distributed Sensor
Networks, vol. 12 (11), pp. 1-13, Nov. 2016.

[14] W.U. Rahman, Y.S. Choi, K. Chung, “Performance
Evaluation of Video Streaming Application Over CoAP in
IoT,” IEEE Access, vol. 9, pp.39852-39861, Apr. 2019.

[15] J.H. Jung, M. Gohar, S.J. Koh, “CoAP–Based Streaming
Control for IoT Applications,” Electronics, vol. 9 (8),
2020, 1320, DOI: 10.3390/electronics9081320, pp. 2-19,
Aug. 2020.

[16] E. Ancillotti, R. Bruno, “BDP–CoAP: Leveraging
Bandwidth-Delay Product for Congestion Control in
CoAP,” in Proc. of 5th IEEE World Forum on Internet of
Things (WF-IoT), Ireland, Apr. 2019, pp. 656-661.

[17] E. Ancillotti, R. Bruno, C. Vallati, E. Mingozzi, “Design
and Evaluation of a Rate–Based Congestion Control
Mechanism in CoAP for IoT Applications,” in Proc. 19th
IEEE Int. Symposium on “A World of Wireless, Mobile
and Multimedia Networks” (WoWMoM), Greece, Jun.
2018, pp. 14–15.

A CONTROL MECHANISM FOR RELIABLE BURST DATA TRANSFER IN IoT NETWORKS

[18] D.H. Hoang, T.T.D. Le, “RCOAP: A Rate Control Scheme
for Reliable Bursty Data Transfer in IoT Networks,” IEEE
Access, vol. 9, 2021, doi:
10.1109/ACCESS.2021.3135435, pp. 169281-169298.

[19] L. Kleinrock, “Internet congestion control using the power
metric: Keep the pipe justfull, but no fuller,” Ad Hoc
Networks, (2018), 05-015, pp.1-16.

[20] S. Keshav, “A Control-theoretic Approach to Flow
Control,” in ACM SIGCOMM, Computer Communication
Review, Vol.21, Issue 4, Sept. 1991, pp 3–15
(https://doi.org/10.1145/115994.115995).

[21] R. Jain, “A delay-based approach for congestion avoidance
in interconnected heterogeneous computer networks,” CM
SIGCOMM Computer Communication Review, Volume
19, Issue 5, Oct. 1989, pp 56–71,
(https://doi.org/10.1145/74681.74686).

[22] NS-3 Network Simulator, version 3.36, available:
https://www.nsnam.org/

MỘT CƠ CHẾ ĐIỀU KHIỂN TRUYỀN CHÙM DỮ
LIỆU TIN CẬY TRONG MẠNG IoT

Tóm tắt: Mạng IoT đang được ứng dụng rộng rãi
trong nhiều lĩnh vực như công nghiệp, y tế, nông nghiệp,
môi trường. Nhiều ứng dụng đòi hỏi thường xuyên truyền
một lượng lớn dữ liệu đã thu thập từ các thiết bị IoT để
gửi về một máy chủ trung tâm. Nếu không có cơ chế điều
khiển phù hợp, mạng sẽ rất dễ xảy ra tắc nghẽn. Giao thức
CoAP (Constrained Application Protocol) đã được đề xuất
để truyền dữ liệu trong mạng IoT. Bài báo này phân tích
các hạn chế của CoAP và chỉ ra CoAP chưa có cơ chế
điều khiển tốc độ phát và không hỗ trợ truyền chùm dữ
liệu tin cậy. Để cải tiến CoAP, chúng tôi xây dựng một
mô hình giải tích cho truyền chùm dữ liệu tin cậy với
CoAP có sử dụng điều khiển tốc độ. Dựa vào mô hình đã
xây dựng, bài báo đề xuất một cơ chế điều khiển tốc độ
mới cho phép truyền chùm dữ liệu tin cậy với thông lượng
cao, độ trễ thấp và cải thiện việc điều khiển chống tắc
nghẽn cho CoAP trong mạng IoT.

Từ khóa: Điều khiển tốc độ, truyền chùm dữ liệu,
điều khiển chống tắc nghẽn, giao thức CoAP, mạng IoT.

Le Thi Thuy Duong, received the
B.S. degree in telecommunications
and electronic engineering from
Technical University of Hanoi,
Vietnam, in 2002, and the M.S.
degree from Technical University of
Hanoi, Vietnam, in 2008. Since
2005, she has been a lecturer with
the Faculty of Information
Technology at University of Civil

Engineering, Hanoi, Vietnam. Currently, she is a senior
lecturer. She is pursuing the Ph.D. degree at Posts and
Telecommunications Institute of Technology, Hanoi,
Vietnam. Her current research interests include computer
and communication systems, wireless sensor networks,
QoS mechanisms, and network performance.

Hoang Dang Hai, received the
Diplom Ing. (M.Eng.) degree in
technical cybernetics and
automation from Technical
University of Ilmenau, Germany, in
1984. He received the Dr.-Ing.
degree and the Dr.-Ing.habil. degree
in telematics and communication
systems from Technical University
of Ilmenau, Germany, in 1999 and in

2002, respectively. Since 2009, he has been an Associate
Professor at Posts and Telecommunications Institute of
Technology, Hanoi, Vietnam. His current research
interests include information security, communication
protocols, communication systems, QoS mechanisms,
and control systems.

Pham Thieu Nga, received the
Diplom Ing. (M.Eng.) degree in
technical cybernetics and
automation in 1987, and the Dr.-Ing.
degree in Informatics and
Automation in 2000 from Technical
University of Ilmenau, Germany.
Since 2006, she has been a Senior
Lecturer at the Faculty of Information

Technology at University of Civil Engineering, Hanoi,
Vietnam. Her current research interests include fuzzy
control, fuzzy optimization, fuzzy decision, expert
systems, wireless sensor networks, IoT networks, system
techniques, and control systems.

