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Abstract: The increasing incidence of heart-related 

diseases has prompted the development of efficient 

techniques to identify irregular heart problems. It has 

proven to be challenging to promptly and accurately 

diagnose many complicated and interferential symptom 

diseases including arrhythmia. Thanks to the recent 

evolution of artificial intelligence (AI) and the advances in 

signal processing, automated arrhythmia classification has 

become more effective and widely applied for physicians 

and practitioners with machine learning (ML) techniques 

and the use of electrocardiograms (ECG). In this work, we 

have investigated a machine learning-based arrhythmia 

classification problem based on ECGs and successfully 

proposed an efficient ECG-based machine learning 

solution employing R-peaks. In order to enhance the 

arrhythmia diagnosis performance, our developed 

approach exploits a Butterworth filter and utilizes the 

EEMD technique, Hilbert transformation, and a proper 

machine learning algorithm. The performance of the 

proposed method is evaluated with the most popular public 

dataset, MIT-BIH Arrhythmia. The numerical results 

imply that the developed method outperforms the notable 

algorithms given in the conventional works and obtains 

better performance with an accuracy of 93.4%, a 

sensitivity of 95.4%, and an F1-score of 96.3%. The 

attained high F1-score proves that the proposed method 

can effectively deal with the data imbalance while 

detecting arrhythmia, or in other words, it can be suitable 

and proper to deploy in practical clinical environments. 

Keywords: ECG, EEMD, Hilbert transform, Machine 

learning, Arrhythmia classification. 

I. INTRODUCTION 

Nowadays, cardiovascular diseases have been known 

as one of the most dangerous health problems that caused a 

lot of deaths worldwide. As WHO mentioned on its 

website, CVD caused 17.9 million deaths for people in 

2019, approximately 32% of the whole global deaths, and 

85% of these deaths came from heart attacks and strokes 

[1]. Although with the improvement of medical and 

healthcare services and modern residents’ healthy lifestyles 

in developed countries, cardiovascular problems have 

declined gradually, the death rate related to cardiovascular 

diseases is still high in low-income and middle-income 

countries. Therefore, developing efficient solutions to deal 

with these problems is extremely important and necessary 

to extend the life of patients. To reduce the negative effects 

of cardiovascular diseases, irregular rhythm identification 

soon is highly crucial. Fortunately, an electrocardiogram 

(ECG), which can capture the heart's electrical activity, is 

considered the most reliable method for identifying 

arrhythmias [2]. P-wave, T-wave, and QRS complex are 

essential elements of the ECG signal. The initial detectable 

movement on the ECG is the P-wave, which lasts for a 

range of 80-120 ms. The duration of the T-wave is 160-200 

ms, and it indicates the repolarization of the ventricles, 

which is the basis for detecting rhythm irregularities. 

Lastly, the QRS complex consists of various deflections 

and bundle branch blocks, and it can be used to identify 

ventricular tachycardia. It can detect various forms of 

abnormal heartbeats and bring the foundation information 

for building healing strategies. Formerly, ECG 

comprehension for diagnosing and detecting diseases needs 

healthcare experts, but not whole medical facilities have 

enough professionals that achieve knowledge related to 

ECG. Moreover, ECG readings may be disrupted by 

interference, resulting in the loss of important data that 

could be used to identify arrhythmias. These challenges 

have motivated the development of ECG-based approaches 

that are simpler and more widely available to general users. 

On the other hand, machine learning is recently adopted 

widely to solve a lot of problems in multiple fields such as 

healthcare, security, and telecommunications, … Many 

research used the outstanding ability of machine learning 

to identify irregular heartbeats existing in ECG signals. The 

work of [3] developed an automated arrhythmia 

identification system using different machine learning 

algorithms, such as Support Vector Machine (SVM), k-

nearest neighbors (KNN), Random Forest (RF), and a 

hybrid model combining these algorithms. The objective 

was to improve the detection rate of irregular heartbeats 

with limited samples in the MIT-DB dataset without any 

specialized feature engineering. The results showed that 

SVM had the highest detection rate for abnormal heart 

rhythms with an accuracy of 83%. Similarly, in [4], the 

authors used regular feature techniques such as Principal 

Component Analysis (PCA) and Bag of Visual Words to 
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reduce input spatial and cluster data using 279 features of 

each recording from the UCI dataset. Multiple machine 

learning classifiers were applied to classify 16 classes, and 

SVM was the most effective classifier. In another notable 

study, the authors utilized SVM to identify abnormal 

rhythms in the MIT-BIH dataset [5]. They preprocessed the 

data by handling noise and baseline wander before 

segmenting it into sub-segments and removing irrelevant 

features. Their approach achieved approximately 91% 

accuracy for SVM, demonstrating its effectiveness in 

identifying arrhythmias. A binary classification scenario 

between two targets: the first class represented normal beat 

and the rest class included arrhythmias existing in 

California University at Irvine Machine Learning Data 

Repository was created by Pandey et al. [6]. This dataset 

overcame the cleaning phase and PCA was executed to 

analyze its properties to choose a set of features that 

included the most meaningful features. Afterward, each 

data division portion sequentially experimented with the 

ability of 8 classifiers after using feature selection 

techniques to determine the most suitable data splitting rate 

and the best model for abnormal heartbeat detection. The 

given results expressed that SVM and Naïve Bayes 

classifiers attained the highest accuracy of 89.74% with a 

division ratio of 90% original data for the training phase 

and 10% data for the testing phase. Moreover, the authors 

in [7] carried out a multiclass classification taking 

advantage of four machine learning algorithms including 

SVM, DT, RF, Naïve Bayes, and one deep learning 

algorithm, Artificial Neural Network (ANN), for 5 

prediction classes that consist of one regular heartbeat class 

and the irregular heartbeat 4 classes of MIT-BIH 

Arrhythmia dataset. The amplitude, the area with a non-

overlapped sliding window, and the area with overlapped 

sliding window were three different sets of features used to 

classify. Based on that, an accuracy of 99.59% was 

achieved. 

In this article, an abnormal heartbeat identification 

method using machine learning algorithms and R-peak 

detection of ECG signals is proposed. By utilizing the 

capability of a Butterworth bandpass filter, EEMD 

technique and Hilbert transform, ECG signals from the 

MIT-BIH Arrhythmia dataset are processed to identify R-

peak locations. With the detected R-peak set, multiple sub-

segments are created and combined to achieve the final 

data. A binary classification between two classes including 

Normal and Abnormal is executed. The findings of this 

research can considerably improve the identification 

accuracy of irregular heartbeats. 

The rest of this paper is organized as follows. Section II 

describes the dataset that is used in the work. Our method 

is explained in detail in Section III. Then, the simulation 

results and discussion are shown in Section IV. Finally, 

Section IV concludes the work.  

II. DATA 

In this work, MIT-BIH Arrhythmia dataset was utilized 

[8]. The BIH Arrhythmia Laboratory conducted a study 

between 1975 and 1979 and collected 48 half-hour excerpts 

of two-channel ambulatory ECG recordings from 47 

subjects. Out of these recordings, 23 were randomly 

selected from a larger set of 4000 24-hour ambulatory ECG 

recordings, which were collected from a mixed population 

of inpatients (about 60%) and outpatients (about 40%) at 

Boston's Beth Israel Hospital. The remaining 25 recordings 

were specifically chosen to include less common but 

clinically significant arrhythmias, which would not have 

been well-represented in a small random sample. 

The ECG recordings were converted into digital format 

at a sampling rate of 360 samples per second per channel, 

with a resolution of 11 bits and a range of 10 mV. For each 

record, multiple cardiologists provided annotations 

independently, and any discrepancies were resolved to 

generate computer-readable reference annotations for each 

beat. In total, there were approximately 110,000 

annotations included in the database. Actually, we 

employed the benefits of stratified-lead II, which facilitates 

the analysis of the heart's electrical activity by producing 

visible waveforms. Real-time observation of the variations 

in heart rhythm in the electrical activity of the heart is also 

advantageous. We also consider two predictable 

arrhythmia classes which are Normal and Abnormal [9]. 

The Normal class includes Atrial Escape Beat, Nodal 

(Junctional) Escape Beat, and Normal Beat while the 

Abnormal class consists of Aberrated Atrial Premature 

Beat, Atrial Premature Beat, Fusion of Paced and Normal 

Beat, Fusion of Ventricular and Normal Beat, Left Bundle 

Branch Block Beat, Nodal (Junctional) Premature Beat, 

Paced Beat, Premature Ventricular Contraction, Right 

Bundle Branch Block Beat, Supraventricular Premature 

Beat, Ventricular Escape Beat and Unclassifiable Beats. 

III. METHOD 

Figure 1 shows a functional block diagram of our 
proposed method to detect arrhythmias. The developed 
solution includes two phases that are R-peak detection and 
machine learning classification. In the first phase, for 
detecting the R-peak positions, a Butterworth bandpass 
filter is applied to the ECG signal in order to eliminate the 
baseline wander and high-frequency noises then, the 
EEMD technique is used to decompose the filtered signal 
into an IMF set for combining the first three IMFs 
representative sufficient R-peaks information and the first 
derivative calculation is performed to figure out the 
minima or maxima points, Hilbert transformation is 
utilized to transform differentiated signals and identify the 
Hilbert envelope whose maximum value positions 
representing the R-peaks. In the second phase, R-peak data 
will be processed as input data and normalized for 
applying machine learning algorithms. To select a proper 
machine learning algorithm for creating the most effective 
solution for detecting arrhythmias, typical machine 
learning algorithms are verified and tested. 
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Fig. 1. Block diagram of proposed method 
 

A. Machine learning algorithms 

In this work, we investigate nine machine learning 

algorithms that are clustered into multiple individual 

algorithm groups: 1) Ensemble methods group, 2) 

Boosting algorithms group, 3) KNN, and 4) SVM. The 

reason why we selected different algorithm groups is that 

each group had different advantages and disadvantages, so 

we wanted to benchmark our data with multiple algorithms 

to maximize the classification result to the highest and 

determine the most suitable classifier. 

Gradient Boosting (GB) [10]: In contrast to Bagging, 

Gradient Boosting is a machine learning algorithm used 

for both regression and classification requirements. 

Multiple weak learners are utilized to create a stronger 

learner. The algorithm works by sequentially adding weak 

components to an ensemble, with each ingredient 

attempting to correct the drawbacks made by the previous 

trees. The boosting procedure optimizes a loss function 

with respect to the ensemble of trees, by using gradient 

descent to minimize the loss. 

Bagging (BG) [11]: Bagging is a type of ensemble 

learning algorithm that involves combining multiple 

models by training parallelly each subcomponent on 

individual random subsets of the training data. The main 

goal of bagging is to decrease the variance of the model by 

reducing overfitting. The final classification result was 

achieved based on the average value of multiple sub-

elements in regression and voting results in classification 

problems. Bagging can be used with any type of model, 

but it is most commonly used with decision trees. 

Random Forest (RF) [11]: A special extension of 

Bagging algorithms, especially, sub learners of them is 

multiple individual decision trees. The algorithm 

randomly selects a subset of the features from the training 

set of original data to build each subcomponent. The final 

result was achieved with the same method as Bagging. The 

purpose of using randomization in the construction of 

decision trees is to reduce overfitting and improve the 

generalization performance of the model. It is also 

relatively fast and can handle high-dimensional data with 

ease. 

k-Nearest Neighbors (KNN) [11]: A machine learning 

method that uses the proximity of data points to make 

predictions. K nearest data points are identified in the 

feature space to a given query point and use their labels or 

values to predict the label or value of the query point. For 

classification tasks, the most common label among the k 

nearest points is assigned as the prediction, while for 

regression tasks, the average value of the k nearest points 

is used as the prediction. Unlike some other machine 

learning methods, KNN is non-parametric and makes no 

assumptions about the data distribution. 

Support vector machine (SVM) [12]: A supervised 

machine learning algorithm that can be used for various 

tasks including classification, regression, and outlier 

detection. SVM aims to find the hyperplane that separates 

the data points of different classes in the feature space with 

maximum margin, which is the distance between the 

hyperplane and the closest data points of each class. When 

the data is linearly separable, the hyperplane is a line, 

while in non-linearly separable data, SVM uses kernel 

functions to map the data into a higher-dimensional feature 

space where a linear hyperplane can be used. The larger 

the margin, the better the generalization performance of 

the SVM model. 

AdaBoost (AB) [13]: An iterative ensemble learning 

algorithm is used for classification tasks. The algorithm 

trains a sequence of base learners on a weighted version of 

the training data, where the weights of misclassified data 

points are increased in each iteration. The final prediction 

is a weighted combination of the predictions of all the base 

learners. Adaboost can be combined with any type of base 

learner and is known for its high accuracy and ability to 

handle complex datasets. 

XGBoost (XGB) [14]: The algorithm is based on 

gradient boosting and is optimized to improve its speed 

and performance. It uses advanced regularization 

techniques to prevent overfitting and supports parallel 

processing to handle large datasets. XGBoost is known for 

its ability to achieve high accuracy and is commonly used 

in various machine-learning tasks. 

LightGBM (LGBM) [15]: A machine learning 

algorithm that prioritizes training speed and memory 

efficiency. It uses gradient-based one-sided sampling 

(GOSS) to select a subset of data points for each iteration, 

which saves time by reducing computation. Additionally, 

LightGBM employs histogram-based algorithms for 

sorting and splitting data, further improving its efficiency. 

Logistic Regression (LR) [16]: A supervised learning 

algorithm that estimates the parameters of a logistic 

function, also known as the sigmoid function. The sigmoid 

function maps the input variables to a value between 0 and 

1, and a threshold is used to make the final classification 

prediction. Unlike non-parametric models, logistic 

regression makes assumptions about the underlying data 

distribution. 

B. Data processing 

a) Noises, artifacts and baseline wander elimination 

To remove baseline and high-frequency noise from the 

original signal, a Butterworth filter is used. The frequency 
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range of a normal ECG signal typically falls between 0.01 

Hz and 100 Hz, but most of its energy, about 90%, is 

concentrated between 0.25 Hz and 35 Hz. Removing 

frequencies from 0 Hz to 0.5 Hz can also help reduce 

baseline drift. The selection of the Butterworth filter's 

cutoff frequency is crucial; if it is too low, the filter won't 

remove noise efficiently, and if it is too high, valuable 

information can be lost and the signal can be distorted. 

Therefore, a 5th-order Butterworth bandpass filter with a 

low cutoff frequency of 0.5 Hz and a high cutoff frequency 

of 35 Hz is used to smooth the original ECG signal. Figure 

2 demonstrates the raw ECG and its filtered one. 

 

Fig. 2. Description of the baseline wander removal. 

b) ECG Signal disintegration 

The next step involved dividing the processed wave 

into several monocomponent signals, known as Intrinsic 

Mode Functions (IMFs), using Ensemble Empirical Mode 

Decomposition (EEMD) techniques. The EEMD approach 

is previously introduced in [17], and it offers the advantage 

of breaking down the original signal into its component 

IMFs, allowing for the examination of the properties of 

each component and the identification of ECG signal 

fiducial points such as the P wave, T wave, QRS complex, 

and others (see Figure 3).  

 

Fig. 3. Morphology of a normal ECG. 

 

Fig. 4. The first seven IMFs of the filtered ECG signal are decomposed 

by using the EEMD. 

Figure 4 displays the first seven IMFs in descending 

order of frequency, and it is evident that the majority of the 

valuable information is concentrated in IMF1, IMF2, and 

IMF3 because the waveform of these IMFs is extremely 

complex than the rest. These IMFs are combined into a 

new IMF using the function (1), and R-peak detection is 

performed using the multiplication of f1 and f2, where the 

equation of f2 was given in (2). Figure 5 illustrates the raw 

ECG signal, the Hilbert envelope of f1, and the Hilbert 

envelope of the multiplication of f1 and f2 to normalize the 

signal and reduce the R-peak detection error rate. 
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Fig. 5. (a) The raw ECG signal, (b) Hilbert envelope of the 

function f1, (c) Hilbert envelope of the function f1 x f2. 
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c) Hilbert transformation and R-peak detection 

The Hilbert transform is a method used for detecting 

R-peaks in ECG signals. As explained in a previous study 

[19], the transformed signal resulting from the Hilbert 

transform will intersect the x-axis at zero whenever a peak 

occurs in the differentiated signal. This allows each 

intersection at zero in the original waveform to be 

represented as a peak in the resulting HT-processed signal. 

Therefore, the Hilbert transform is a suitable method for 

detecting R-peaks in ECG signals.  

After applying the first derivative to the combined 

IMF, the Hilbert transform is applied to calculate the 

Hilbert envelope using (3). The Hilbert envelope retains 

phase information and allows for accurate measurement of 

time-dependent characteristics of the signal. Additionally, 

it helps minimize signal distortion and improves the 

efficiency of the R-peaks detection stage. 

 

The location of the peak is identified by an adaptive 

time threshold based on the mean length of the R-R 

intervals between previous R-peaks (see Figure 6), which 

utilizes the most recent R-peak location. 

 

Fig. 6. Illustration for RR interval. 

d) Final recording generation 

 After identifying the location of each R-peak in the 

ECG signal, the mean RR interval time is calculated by 

finding the average value of the time interval between 

consecutive R-peaks. The RR interval is an important 

metric for analyzing heart rate variability and can indicate 

irregularities in heart activity, such as arrhythmias. A 

segment of the signal with a width of 1.2 times the mean 

RR interval time is selected around each R-peak. The 

amplitude of each segment is then normalized to fall 

within the range of [0, 1]. The final ECG recordings are 

obtained by combining these segments. 

 After combining multiple signal segments of each R-

peak, machine learning algorithms are used to detect heart 

rhythm disturbances. Two prediction classes are created, 

Normal and Abnormal, based on the annotations of the 

MIT-BIH dataset. The Normal label included usual beats, 

and the Abnormal label contains the remaining beats. 

Binary classification is performed using nine algorithms: 

GB, BG, RF, KNN, SVM, AB, XGB, LGBM, and LR for 

the two classes. Since the data used is imbalanced, the 

accuracy metric is not sufficient to evaluate the approach's 

performance. Therefore, the F1-Score is selected as the 

key metric to evaluate the model's performance. 

IV. PERFORMANCE EVALUATION 

The performance of the approach is evaluated using 
four standard metrics: Sensitivity (Sen), Positive 
Predictive Value (PPV), Accuracy (Acc), and F1-Score 
(F1). Sensitivity, also known as Recall or True Positive 
Rate, measures the ability of the model to correctly 
identify positive values. The Positive Predictive Value 
represents the rate of correctly identified true values 
among all predicted positive values. Accuracy is a metric 
commonly used to evaluate the performance of machine 
learning classifiers. Finally, the F1-Score is a good metric 
for evaluating the performance of a model when working 
with imbalanced data. Therefore, we use the F1-Score as 
the primary metric to evaluate our classifier. Moreover, a 
receiver operating characteristic (ROC) curve, a graphical 
representation of the performance of a binary classifier 
system, is also used. It plots the true positive rate (TPR) 
against the false positive rate (FPR) for different 
classification thresholds. The equations for these metrics 
are shown in (4), (5), (6), and (7). 

 

A. R-peak detection 

The ECG signal's R-peaks are identified using a 5-
order Butterworth bandpass filter with a low cut-off 
frequency of 0.5 Hz and high cut-off frequency of 35 Hz, 
as well as the EEMD technique and Hilbert transform. The 
R-peak detection rate is found to be excellent, with an error 
rate of only 0.028% [18]. Figures 7, 8, 9, 10, and 11 
provide visual representations of the IMF combinations, 
the first derivative of the signal, the Hilbert transformation 
for each component, the Hilbert envelope, and the R-peak 
detection results. 

 

Fig. 7. The ensemble IMF combined from IMF1, IMF2, IMF3 

 

Fig. 8. The first derivative of combined signal 

 

Fig. 9. Signal after using Hilbert transform 
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Fig. 10. Hilbert envelope 

 

Fig. 11. R-peak detection 

B.  Machine learning classifiers 

a)   Gradient Boosting 

For this algorithm, three most important 

hyperparameters are selected for the tuning stage, 

including: "n_estimators", "max_leaf_nodes", and 

"learning_rate". “n_estimators” controls the number of 

trees used in the boosting ensemble. Increasing this value 

can potentially improve the performance of the model, but 

it can also lead to overfitting. It is crucial to tune this 

parameter to find the right number of trees that balances 

bias and variance. "max leaf_nodes" limits the maximum 

number of leaf nodes in each tree. It controls the 

complexity of each tree, and therefore, the overall 

complexity of the boosting ensemble. Tuning this 

hyperparameter can prevent the model from overfitting by 

limiting the capacity of each tree. Finally, the “learning 

rate” hyperparameter is responsible for controlling the 

influence of each tree on the final prediction. A smaller 

learning_rate value implies that each tree has a smaller 

impact on the final prediction, which helps prevent 

overfitting. On the other hand, a smaller “learning_rate” 

also means that the boosting ensemble may need more 

trees to achieve the same level of performance. 

Consequently, it is essential to determine the best 

learning_rate value that balances the trade-off between 

bias and variance. Table 1 summarizes the best tunning 

values of the given hyper-parameters. 

Table 1. Best tuning hyper-parameters for Gradient Boosting 

Hyper-

parameter 

 

n_estimators 

 

max_leaf_nodes 

 

learning_rate 

Best 

tuning 

value 

 

500 

 

10 

 

1 

 

b)   Bagging 

In this algorithm, “min_samples_leaf”, 

“min_samples_split” and “max_depth” hyper-parameters 

are optimized. A leaf node’s minimum number of samples 

is determined by “min_samples_leaf”. Besides, a 

minimum number of samples to split a node is also 

indicated by “min_samples_split” and “max_depth” 

which helps us know the maximum depth of the tree. This 

is essential to tune this hyper-parameter because if it is too 

low or too high, it can lead to underfitting or overfitting. 

Table 2 describes the best tunning values of the considered 

parameters. 

Table 2. Best tuning hyper-parameters for Bagging 

Hyper-

parameter 

 

min_samples_leaf 

 

min_samples_split 

 

max_depth 

Best 

tuning 

value 

 

1 

 

2 

 

None 

 

c)   Random Forest 

Because Random Forest is an extension of Bagging, 

therefore we will use mentioned hyper-parameters in a) 

and b) for tuning: “max_depth”, “min_samples_leaf”, 

“min_samples_split”, “n_estimators”. The importance of 

these criteria was remarked on previously. The Random 

Forest’s best tuning hyper-parameters is shown in Table 3. 

Table 3. Best tuning hyper-parameters for Random Forest 

Hyper-

parameter 

min_samples 

_leaf 

min_samples 

_split 

max 

_depth 

n 

_estimators 

Best 
tuning 

value 

 
1 

 
2 

 
70 

 
200 

 

d)   K Nearest Neighbors 

“n_neighbors” is the only hyper-parameter for 

optimizing the process for KNN. With this hyper-

parameter, the number of nearest neighbors that takes part 

in the prediction phase is determined. Increasing this 

hyperparameter’s value can help to prevent overfitting by 

smoothing the decision boundary, but it may also increase 

bias by reducing the model's flexibility. The best tuning 

value of the KNN parameter is shown in Table 4. 

Table 4. Best tuning hyper-parameters for KNN 

Hyper-parameter n_neighbors 

Best tuning value 3 

e)   Support Vector Machine 

The best tuning values of SVM parameters are 

summarized in Table 5. Four hyper-parameters are chosen 

for enhancing with this algorithm. “C” is a crucial value, 

if it is too low, underfitting can happen because simple 

decision will be used. In contrast, it can lead to overfitting 

problems. The boundary architecture is determined by 

“gamma”. Input data’s dimension is increased by a 

function and this function’s type is indicated by “kernel”. 

Lastly, our processed data was imbalanced between two 

target classes, so “class_weight” is tuned to balance the 

importance of training data’s classes. 

Table 5. Best tuning hyper-parameters for SVM 

Hyper-

parameter 

 

C 

 

class_weight 

 

gamma 

 

kernel 

Best tuning 

value 

 

0.1 

 

0: 1, 1: 5 

 

0.01 

 

‘rbf’ 

e)   AdaBoost 
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Optimization hyper-parameters for AdaBoost, 

included: “n_estimator”, “learning_rate”, “max_depth”, 

and “class_weight” is mentioned specifically about their 

effect on the classification result of the model. The tuning 

hyper-parameters of this algorithm would be shown in 

Table 6. 

Table 6. Best tuning hyper-parameters for Adaboost 

Hyper-

parameter 

n 

_estimator 

learning 

_rate 

 

max_depth 

 

class_weight 

Best tuning 

value 

 

200 

 

1 

 

3 

 

0: 1, 1: 10 

 

f)   XGBoost 

Besides the used hyper-parameters such as 

“max_depth”, “learning_rate”, and “n_estimators”, two 

extra hyper-parameters are bonused: “subsample”, 

“colsample_bytree”. The fraction of observations of each 

tree is randomly chosen by “subsample” and the fraction 

of features of each tree is randomly picked, both hyper-

parameters usually in the range [0.5: 0.8]. The best tuning 

hyper-parameters for XGboost are described in Table 7. 

Table 7. Best tuning hyper-parameters for XGboost 

Hyper-

parameter 

col 

sample 

_bytree 

 

learning 

_rate 

max 

_depth 

n 

_estimators 

sub 

sample 

Best 
tuning 

value 

 
0.5 

 
1 

 
5 

 
200 

 
1 

 

g)   LightGBM 

Five hyper-parameters are tuned and three of them are 

new hyper-parameters. “boosting type” indicates the using 

format of LGBM: Gradient Boosting or Random Forest, 

respectively suitable for small and large data. The number 

of leaves in each tree is adjusted by “num_leaves”. Finally, 

the minimum number of samples of a node in the decision 

tree is determined by “min_data_in_leaf”. Table 8 

demonstrates the best tuning hyper-parameters for LGBM. 

Table 8. Best tuning hyper-parameters for LGBM 

Hyper-

parameter 

boosting 

_type 

 

num 

_leaves 

learning 

_rate 

min_data

_in_leaf 

Class 

_weight 

Best 

tuning 

value 

 

‘gbdt’ 

 

15 

 

0.05 

 

20 

 

0: 1, 1: 1 

 

h)   Logistic Regression 

Table 9 summarizes the best tuning hyper-parameters 

for logistic regression algorithm. “penalty” is the extra 

hyper-parameter for this algorithm. It has two selections: 

‘L1’ and ‘L2’ regularization. With L1, the penalty term is 

the absolute value of the coefficients and the square of the 

coefficients in L2. 

 

 

 

 

 

 

Table 9. Best tuning hyper-parameters for LR 

Hyper-

parameter 

 

C 

class 

_weight 

 

penalty 

Best 

tuning 
value 

 

100 

 

0: 1, 1: 1 

 

L2 

C.  Arrhythmia classification 

Table 10. Arrhythmia classification performance 

Classifier Acc(%) Sen(%) PPV(%) F1(%) 

BG 93.1 94.9 97.3 96.1 

BS 89.4 91.7 96.5 94.1 

KNN 91.7 95.2 95.3 95.2 

RF 93.4 95.4 97.2 96.3 

SVM 88.79 89.35 98.94 93.9 

AB 81.51 95.21 68.89 80.61 

XGB 72.58 98.45 68.73 80.95 

LGBM 88.76 88.7 99.82 93.94 

LR 87.95 87.87 99.99 93.54 

 

Table 10 presents the classification outcomes for 

abnormal heartbeats, revealing that the Random Forest 

classifier outperforms the other eight classifiers. Our 

proposed model achieves an F1-Score of 96.3%, which 

effectively classifies abnormal heartbeats even when the 

dataset is imbalanced. The other nine classifiers also 

performed well, with F1-Scores above 80%. While BG has 

a higher PPV than RF, its Sen and the primary metric F1-

Score are inferior to those of RF, indicating that RF 

remained the superior model. Similarly, SVM, LGBM, 

and LR have higher PPV values and XGB has bigger Sen 

values, but the main metric F1-Score of these classifiers is 

worse than Random Forest. Table 10 also provides the 

results for detecting irregular rhythms using the nine 

chosen machine-learning classifiers. Additionally, the 

ROC curve and confusion matrix for the best-performing 

classifier (RF) are shown in Figures 12 and 13.  

 

Fig. 12. ROC curve of random forest algorithm 
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Fig. 13. Confusion matrix of Random Forest 

To evaluate the effectiveness of our proposed model for 

arrhythmia detection, we compare it to other existing 

models in the field. Our comparison revealed that our 

model outperformed previous models with a high F1-

Score, demonstrating the efficiency of our approach for 

handling the MIT-BIH Arrhythmia dataset. Table 11 

summarizes the performance comparison between our 

proposed solution and conventional notable works. The 

proposed model achieves an F1-Score of 96.3%, indicating 

a high performance in identifying irregular rhythms. 

Nevertheless, our model had some limitations. It can only 

classify between two classes: Normal and Abnormal, 

which means it was only able to indicate the presence or 

absence of arrhythmia, but not the specific type of 

abnormal heartbeats. 
In the future, multiple classifications with more 

complex machine learning and deep learning algorithms 
will be utilized to improve the overall classification result 
and widen the ability of the model to detect specific 
arrhythmias. 

Table 11. Performance comparison 

Model Acc(%) Sen(%) PPV(%) F1(%) 

[20] N/A 92.7 95.7 94.2 

[21] 82.5 92.4 N/A N/A 

Proposed 
solution 

93.4 95.4 97.2 96.3 

N/A: Not applicable  

V. CONCLUSIONS 

The rise in heart-related diseases has led to a need for 

proper automatic diagnosis methods for detecting irregular 

heart problems which are challenging to promptly and 

accurately diagnosis. Thanks to the evolution of machine 

learning and the advance in signal processing, automated 

electrocardiogram-based arrhythmia detection has become 

more accurate and widely applied. We have studied 

machine learning and ECG-based arrhythmia detection 

and proposed an efficient solution that exploits R-peak 

detection and machine learning. Our proposed solution 

targeting a binary classification of heartbeats employs an 

efficient R-peak detection that uses a Butterworth bypass 

filter, Ensemble Empirical Mode Decomposition 

(EEMD), and Hilbert Transforms (HT) for processing 

ECG signals, and applies the most effective machine 

learning algorithm among typical ML algorithms to 

improve the performance of the arrhythmia diagnosis. In 

order to select the most suitable one with the highest 

achievable performance, typical nine ML algorithms were 

investigated. A popular public dataset, MIT-BIH 

Arrhythmia, is used for the numerical experiments. The 

attained results prove that our developed solution 

outperforms the notable traditional algorithms and it offers 

the best performance with an accuracy of 93.4%, a 

sensitivity of 95.4%, and an F1-score of 96.3%. The high 

obtained F1-score implies that our solution can overcome 

the data imbalance to detect arrhythmia correctly and be 

effective in practical clinical environments. 
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GIẢI PHÁP CHẨN ĐOÁN RỐI LOẠN NHỊP TIM 

DỰA VÀO TÍN HIỆU ĐIỆN TÂM ĐỒ VÀ KỸ 

THUẬT HỌC MÁY SỬ DỤNG PHÁT HIỆN ĐỈNH R 

 

Tóm tắt: Tỷ lệ mắc các bệnh liên quan đến tim ngày 

càng tăng đã thúc đẩy sự phát triển của các giải pháp kỹ 

thuật hiệu quả để xác định các vấn đề bất thường về tim. 

Việc chẩn đoán kịp thời và chính xác nhiều bệnh về tim 

phức tạp và có triệu chứng giao thoa, bao gồm cả rối loạn 

nhịp tim, thực sự là một thách thức khó khăn. Gần đây, 

nhờ sự phát triển của công nghệ học máy và những tiến bộ 

trong xử lý tín hiệu, việc phân loại rối loạn nhịp tim tự 

động dựa trên tín hiệu điện tâm đồ đã trở nên hiệu quả hơn 

và được áp dụng rộng rãi. Trong bài báo này, chúng tôi 

nghiên cứu và đề xuất một giải pháp hiệu quả trong việc 

phát hiện rối loạn nhịp tim dựa trên kỹ thuật học máy và 

tín hiệu điện tâm đồ sử dụng các đỉnh R. Để nâng cao hiệu 

năng chẩn đoán rối loạn nhịp tim, phương pháp đề xuất 

của chúng tôi khai thác tính năng của bộ lọc Butterworth 

và sử dụng kỹ thuật EEMD, phép biến đổi Hilbert kết hợp 

cùng thuật toán học máy phù hợp. Hiệu năng của phương 

pháp đề xuất được đánh giá với bộ dữ liệu công khai phổ 

biến nhất, MIT-BIH Arrhythmia. Các kết quả mô phỏng 

số cho thấy phương pháp của chúng tôi đạt hiệu năng vượt 

trội so với các thuật toán đáng chú ý khác với độ chính xác 

93,4%, độ nhạy 95,4% và F1-score là 96,3%. Giá trị F1-

score cao chứng tỏ rằng phương pháp đề xuất có thể xử lý 

hiệu quả sự mất cân bằng dữ liệu trong khi phát hiện rối 

loạn nhịp tim, hay nói cách khác, nó có thể phù hợp và phù 

hợp để triển khai trong môi trường lâm sàng thực tế. 

Từ khoá: Tín hiệu điện tâm đồ, EEMD, biến đổi 

Hilbert, học máy, phát hiện rối loạn nhịp tim. 
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